Vol. 53
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-02-05
Microwave Imaging of Buried Inhomogeneous Objects Using Parallel Genetic Algorithm Combined with FDTD Method
By
, Vol. 53, 283-298, 2005
Abstract
Microwave imaging of buried ob jects has been widely used in sensing and remote-sensing applications. It can be formulated and solved as inverse scattering problems. In this paper, we propose a hybrid numerical technique based on the parallel genetic algorithm (GA) and the finite-difference time-domain (FDTD) method for determining the location and dimensions of two-dimensional inhomogeneous objects buried in a lossy earth. The GA, a robust stochastic optimization procedure, is employed to recast the inverse scattering problem to a global optimization problem for its solution. To reduce its heavy computation burden, the GA-based inverse computation is parallelized and run on a multiprocessor cluster system. The FDTD method is selected for the forward calculation of the scattered field by the buried inhomogeneous object because it can effectively model an inhomogeneous object of arbitrary shape. Sample numerical results are presented and analyzed. The analysis of the numerical results shows that the proposed hybrid numerical technique is able to determine the location and dimension of a 2D buried inhomogeneous object, and the parallel computation can effectively reduce the required computation time.
Citation
Xing Chen, Ka-Ma Huang, and Xiao-Bang Xu, "Microwave Imaging of Buried Inhomogeneous Objects Using Parallel Genetic Algorithm Combined with FDTD Method," , Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902
References

1. Rekanos, I. T. and A. Raisanen, "Microwave imaging in the time domain of buried multiple scatterers by using the FDTD-based optimization technique," IEEE Transactions on Magnetics, Vol. 39, No. 3, 2003.
doi:10.1109/TMAG.2003.810526

2. Souriau, L., B. Duchene, D. Lesselier, and R. E. Kleinman, "Modified gradient approach to inverse scattering for binary objects in stratified media," Inverse Problems, Vol. 12, 463-481, 1996.
doi:10.1088/0266-5611/12/4/009

3. Cui, T. J. and W. C. Chew, "Novel diffraction tomographic algorithm for imaging two-dimensional dielectric objects buried under a lossy earth," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, 2033-2041, 2000.
doi:10.1109/36.851784

4. Cui, T. J. and W. C. Chew, "Diffraction tomography algorithm for the detection of three-dimensional objects buried in a lossy half-space," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 1, 42-49, 2002.
doi:10.1109/8.992560

5. Cui, T. J., W. C. Chew, et al. "Inverse scattering of two-dimensional dielectric objects buried in a lossy earth using the distorted Born iterative method," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, No. 2, 339-345, 2001.
doi:10.1109/36.905242

6. Caorsi, S., A. Massa, M. Pastorino, M. Raffetto, and A. Randazzo, "Detection of buried inhomogeneous elliptic cylinders by a memetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2878-2884, 2003.
doi:10.1109/TAP.2003.817984

7. Pastorino, M., A. Massa, and S. Caorisi, "A microwave inverse scattering technique for image reconstruction based on a genetic algorithm," IEEE transactions on Instrumentation and Measurement, Vol. 49, No. 3, 573-578, 2000.
doi:10.1109/19.850397

8. Cui, T. J. and W.-T. Chen, "Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm," IEEE Transactions on Microwave Theory and Techniques, Vol. 48, No. 11, 1901-1905, 2000.
doi:10.1109/22.883869

9. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique based on a real-coded genetic algorithm for microwave imaging purposes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 38, No. 4, 1097-1708, 2000.
doi:10.1109/36.851968

10. Caorsi, S., A. Massa, and M. Pastorino, "Microwave imaging within the second-order approximation: stochastic optimization by genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 1, 22-31, 2001.
doi:10.1109/8.910525

11. Chen, W. T. and C.-C. Chiu, "Inverse scattering of a buried imperfect conductor," Proceedings of the Vth International Seminar/Workshop on Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory, 115-119, 2000.
doi:10.1109/DIPED.2000.890015

12. Cui, T. J. and W.-T. Chen, "Frequency dependence on image reconstruction for a buried conductor," IEEE Instrumentation and Measurement Technology Conference Proceedings, No. 5, 323-325, 2001.

13. Huang, K., X.-B. Xu, L.-P. Yan, and M. Zhang, "A new noninvasive method for determining the conductivity of tissue embedded in multilayer biological structure," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 6, 851-860, 2002.

14. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. on Antennas and Propagation, Vol. AP-14, No. 4, 302-307, 1966.

15. Kunz, K. S. and R. J. Luebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, 1993.

16. Taflove, A., Advance in Computational Electrodynamics, Artech House, 1998.

17. Moss, C. D., F. L. Teixeira, Y. E. Yang, and J. A. Kong, "Finite-Difference Time-Domain simulation of scattering from ob jects in continuous random media," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, No. 1, 178-186, 2002.
doi:10.1109/36.981359

18. Ma, J.-F., W. H. Yu, and R. Mittra, "Detection of buried dielectric cavities using the Finite-Difference Time-Domain method in conjunction with signal processing techniques," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 9, 1289-1294, 2000.
doi:10.1109/8.898760

19. Dogaru, T. and L. Carin, "Time-Domain sensing of targets buried under a rough air-ground interface," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 3, 360-372, 1998.
doi:10.1109/8.662655

20. Goldberg, D. E., Genetic Algorithms in Search, Optimization, 1989.

21. Davis, L., Handbook of Genetic Algorithms, Van Nostrand Reinhold, 1991.

22. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: a review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
doi:10.1109/8.558650

23. Oh, S.-K., C. T. Kim, and J.-J. Lee, "Balancing the selection pressures and migration schemes in parallel genetic algorithms for planning multiple paths," Proceedings of the 2001 IEEE international Conference on Robotics & Automation in Seoul, No. 5, 3314-3319, 2001.

24. Wong, S. C., C. K. Wong, and C. O. Tong, "A parallelized genetic algorithm for the calibration of Lowry model," Paral lel Computing, Vol. 27, 1523-1536, 2001.
doi:10.1016/S0167-8191(01)00104-1