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Abstract—Microwave imaging of buried objects has been widely used
in sensing and remote-sensing applications. It can be formulated
and solved as inverse scattering problems. In this paper, we
propose a hybrid numerical technique based on the parallel genetic
algorithm (GA) and the finite-difference time-domain (FDTD) method
for determining the location and dimensions of two-dimensional
inhomogeneous objects buried in a lossy earth. The GA, a robust
stochastic optimization procedure, is employed to recast the inverse
scattering problem to a global optimization problem for its solution.
To reduce its heavy computation burden, the GA-based inverse
computation is parallelized and run on a multiprocessor cluster system.
The FDTD method is selected for the forward calculation of the
scattered field by the buried inhomogeneous object because it can
effectively model an inhomogeneous object of arbitrary shape. Sample
numerical results are presented and analyzed. The analysis of the
numerical results shows that the proposed hybrid numerical technique
is able to determine the location and dimension of a 2D buried
inhomogeneous object, and the parallel computation can effectively
reduce the required computation time.
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1. INTRODUCTION

Microwave imaging of buried objects is one of the most challenging
research topics, and it has been widely used in sensing and remote-
sensing applications, such as geophysical exploration, medical imaging,
civil engineering, and nondestructive testing. It can be formulated
and solved as inverse scattering problems. As pointed out in [1],
the inverse scattering problems are nonlinear due to the fact that the
scattered field is a nonlinear function of the electromagnetic properties
of the objects, and they are ill-posed because the operator that maps
the scatterer properties to the scattered field is compact. In general,
the nonlinearity of the inverse scattering problems can be coped with
by employing iterative optimization technique, and the ill-posedness
can be treated by using regularization schemes. In the past, many
inversion techniques have been developed to reconstruct the object
profile of underground targets. Among these techniques, a number
of effective optimization strategies have been proposed. The modified
gradient approach has been used to determine the shape and location
of a two-dimensional (2D) cylinder embedded in a homogeneous lower
half space [2]. The cylinder considered in [2] is assumed to be
homogeneous, and its field formulation involves integrals of Green’s
functions of stratified medium. Also, diffraction tomographic (DT)
algorithms have been developed for solving the inverse scattering
problem of a 2-D dielectric cylinder [3], and a three-dimensional (3-D)
dielectric object [4], buried in a lossy half space. Their formulations
are based on the Born approximation that the total field within the
object is approximately equal to the incident field under the condition
that the electromagnetic parameters (permittivity, permeability, and
conductivity) of the buried object have a low contrast compared with
the background. In addition, an efficient numerical scheme, based
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on the distorted Born iterative method (DBIM), has been developed
for reconstructing the permittivity and conductivity profile of 2-D
dielectric objects buried in a lossy earth [5]. In [3–5], integral equations
containing Dyadic Green’s functions are formulated, and the numerical
results presented are for homogeneous objects. In [6], the inverse
scattering of a buried inhomogeneous cylinder is analyzed, making
use of an evolutionary algorithm called memitic algorithm. But the
analysis is limited to elliptic cylinders only. The Genetic Algorithm
(GA) is also a class of popular evolutionary algorithm. It is able
to obtain a global solution and can deal with the high non-linearity
resulting from a high contrast between the scatter and the lossy earth,
which precludes application of the techniques based on the Born-
approximation. It has been effectively employed, with integral equation
formulations, for determining the inverse scattering of 2-D homogenous
objects located in free-space [7–10], and that buried in a stratified
region [11, 12]. Also, the GA has been used for determining the
conductivity of tissue embedded in a multi-layer biological structure
[13].

In this paper, we propose a hybrid numerical technique based on
parallel genetic algorithm and finite-difference-time-domain (FDTD)
method for determining the inverse scattering of a 2-D inhomogeneous
object of arbitrary shape. The electromagnetic properties of the
buried object may be of high or low contrast to its background
material. Its location and dimension are the unknown parameters
to be determined. Different from the previously published work
[7–12], the FDTD method is employed for the forward calculation
of the scattered electric field by the buried object at a number
of observation points. Being compared with the integral equation
formulation used in the previous research, the FDTD approach is more
efficient for modeling inhomogeneous objects and complex geometries.
For recovering the profile of a buried object, its scattered field needs
to be measured at a number of observation points. In order to
obtain sufficient information, the measurement data are acquired at
multi frequencies. Then the GA is used in the inverse calculation to
recover the location and dimension of the buried inhomogeneous object
by recasting the inverse scattering problem to a global optimization
problem and then maximizing a fitness function that represents the
correspondence between the measured and the calculated scattered
electric field at the observation points. Realizing that the forward
scattering calculation must be called tens or even hundreds times at
each generation in the GA optimization procedure, the computation
could be very time-consuming. Since the GA exhibits an intrinsic
parallelism and it allows a very straightforward implementation on
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parallel computers, we implement the GA-based numerical technique
into parallel computation to make the computation more effective. The
computation is parallelized in a master-slave model and is carried out
in a multiprocessor cluster system.

To validate the proposed numerical technique based on the parallel
genetic algorithm and the FDTD method, sample numerical results are
presented and analyzed.

2. THE PROPOSED NUMERICAL TECHNIQUE

Fig. 1 depicts, in cross sectional view, a z-oriented infinitely-long
cylindrical object of arbitrary cross section buried below a planar
interface separating two homogeneous half-spaces: the air (εa =
ε0, µa = µ0, σa = 0) and the earth (εe, µe = µ0, σe). The buried
object is assumed to be inhomogeneous, and hence its electromagnetic
parameters (µs, εs, σs) may be variable as functions of (x, y). It is
illuminated by an electromagnetic wave impinging at the interface,
which is taken to be a transverse magnetic (TM) plane wave at
normal incidence. We propose to employ a GA-based hybrid numerical
technique to determine the location and dimension of the buried object.
As pointed out in the previous section, the GA optimization procedure
requires knowledge of the measured as well as the computed scattered
field at each generation; and in this research, the GA-based numerical
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Scattered field from the scatterer

Interface
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Figure 1. An inhomogeneous 2-D object buried below an air-earth
interface.
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technique is implemented in parallel computation. In this section, we
present the measurement model, the forward computation, the GA-
based inverse calculation, and the parallel computation.

2.1. Measurement Model

As illustrated in Fig. 1, the scattered electric field by a buried
inhomogeneous object is measured at a large number of observation
points along a probing line, which is parallel to and above the air-
earth interface. In order to obtain sufficient information, 10 discrete
frequencies equally spaced within the 200 MHz–380 MHz frequency
range are used for the measurement at each observation point.

2.2. The Forward Computation

The FDTD method [14–19] is employed to compute the scattered
electric field at the observation points to provide information needed
at each generation in the GA optimization procedure. A FDTD
computation domain is formulated as a region of interest, which
contains the object, its earth background, and the observation points
above the air-earth interface. The computation domain is discretized
by Yee’s cells [14], and the second-order Mur Absorbing Boundary
Condition (ABC) is used on its boundary to simulate that the scattered
waves are absorbed as they radiate onto the boundary. Then, after
going through a leap-frog solution process, the field can be determined
everywhere in the computation domain. In particular, information of
the scattered electric field at each observation point is obtained, which
is needed for the GA-based optimization procedure described in the
next sub-section.

2.3. The GA-Based Inverse Calculation

The Genetic Algorithm (GA) [20–22] is a robust stochastic search and
evolution procedure. It starts with a set of randomly constituted trial
solutions that is called individuals. In this research, an individual is
a set of location and dimension parameters of a trial buried object.
A collection of the individuals forms a population. Then, the FDTD
method is employed to compute the electric fields scattered by the trial
objects, which are represented by the individuals in the population.
Such calculated electric fields are then compared with the measured
field. The difference between these two sets of data indicates how
close the location and dimension parameters of a trial object are, to
those of the actual buried object. In order to represent the difference
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between the calculated and the measured scattered electric field, a
fitness function is defined as

F = 1 −

√√√√√√√√√

∑
i

∑
j

(
Emeasured

i,j − Ecalculated
i,j

)2

∑
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∑
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(
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i,j

)2 (1)

where i and j denote the frequency index and the observation point
index, Emeasured

i,j and Ecalculated
i,j are the measured and the calculated

electric field intensity at the observation points. One observes from this
equation that when the field difference goes to zero, the value of the
fitness function, namely fitness value, would approach to one. Thus,
the inverse scattering problem is converted to a global optimization
problem of finding out a trial object, which would result in a fitness
value close to 1.

After the selection, crossover, and mutation operations, a new
population is generated, which contains better individuals with larger
fitness values than those in the previous population. Over a number
of generations, the fitness value would be optimized to a value close
to 1, and the corresponding best individual would be used as the final
solution. To prevent the best individual from being lost during the GA
optimization process, the Elitism [7], which copies the best individual
directly to the next generation, is employed in the selection operation.

2.4. The Parallel Computation

The GA-based technique developed for determining the inverse
scattering of a buried inhomogeneous object could be computationally
intensive because it requires a large number of the forward FDTD
computations of the scattered field at every generation. Since
the GA exhibits an intrinsic parallelism and it allows a very
straightforward implementation on parallel computers, we implement
the GA-based numerical technique into parallel computation to make
the computation more effective. In this work, the Parallel GA
(PGA) [23, 24] is adopted and the inverse scattering computation was
run in parallel on a PC cluster system, which consists of 16 PCs
interconnected by a 100 Mbps fast ethernet switch. It’s a homogeneous
cluster system with an AMD XP1700+ processor in each PC.

As pointed in [23], the PGA mainly has three parallel models: the
master-slave, the coarse grain, and the fine grain model. In this work,
the master-slave model is chosen to parallelize the GA in the cluster
system. A processor, which is called “master processor”, is dedicated
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for scheduling and assigning tasks (the forward computations) to the
other processors called ”slave processors”. The slave processors carry
out the forward computations that are assigned to them and then
send the results to the master processor. The flow chart of the
proposed master-slave parallel genetic algorithm combined with the
FDTD method is illustrated in Fig. 2.

Define the fitness function

Build the initial random
population. Each individual in

the population represents a
trial solution.

Execute Task scheduling
calculation, and then assign

individuals to slave processors

Receive results (fitness values)
from slave processors

Perform slection, crossover,
and mutation operations

Is convergence met?

Output results

Receive individuals from the
master processor

Carry out forward
computations of  scattered

field using FDTD

Execute fitness evaluatation

Y

N

Slave Process

Send the fitness values to the
master processor

 ProcessMaster

Figure 2. Flow chart of the proposed parallel genetic algorithm
combined with FDTD method.
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Figure 3. Geometry of a buried circular cylinder with two layers.

3. NUMERICAL RESULTS

To validate the accuracy and the efficiency of the proposed hybrid
numerical technique based on parallel genetic algorithm and FDTD
method, in this section, sample numerical results are presented and
analyzed for buried 2-D objects with layered structures.

The first example is for a buried dielectric circular cylinder of
two coaxial layers characterized by (ε1 = 4ε0, µ1 = µ0, σ1 = 0) and
(ε2 = 8ε0, µ2 = µ0, σ2 = 0). As depicted in Fig. 3, the axis of the
circular cylinder is located by (x0, y0) and the two coaxial layers are of
radii R1 and R2. The location/dimension parameters x0, y0, R1, and
R2 are the four unknowns to be recovered.

As shown in Fig. 4(a), the reconstruction domain is of cross section
containing the buried object. It is divided to 100×100 = 10000 pixels.
The scattered field due to the object, under a TM-wave illumination,
is measured at 90 equally-spaced observation points along a probing
line, which is parallel to and 0.1-m above the air-earth interface. The
measurement is simulated by computation of the scattered field of the
buried object with preset electromagnetic parameters, making use of
the FDTD method. In the GA inverse calculation, the parameters used
are taken to be as the follows. N (the number of individuals in the
population) = 100; Pc (the probability of crossover) = 0.5; and Pm
(the probability of mutation) = 0.2.

In Figs. 4(b)–4(f) are shown the grey-level images of the
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Figure 4. Reconstruction images of the buried circular cylinder at
different generations.
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Figure 5. Fitness values of the best individual in different generations.

reconstructed buried object for different generations. For the first
generation (k = 1), the initial population is created by a set of
pseudorandom values. Then, after a number of generations, the
population is optimized. A comparison between the image for k =
57 depicted in Fig. 4(f) and that for the actual object illustrated
in Fig. 4(a) shows a good match between them, indicating that
the location/dimension parameters of the buried object have been
successively recovered using the proposed hybrid numerical technique.

The values of the fitness function, defined in equation (1), for
different generations are shown in Fig. 5. From this figure, one observes
that the fitness value increases from generation to generation. At the
57th generation (k = 57), it is optimized to 1, which represents a
perfect match between the “measured” and the calculated scattered
field. Such a match corresponds to a successive recovery of the
location/dimension parameters of the buried object, as illustrated in
Fig. 4(f).

To further demonstrate the capacity of the proposed hybrid
numerical technique, we added 5% random noise to the “measurement”
data, and then executed the GA-based inverse calculation. The GA-
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Table 1. The location/dimension parameter solutions for different
generations.

Generation x0 y0 R1 R2 Fitness value
1 63 30 5 25 0.0
5 54 31 9 15 0.43915
11 55 52 9 14 0.64997
19 55 46 9 14 0.68157
33 52 48 10 15 0.72241
45 50 48 10 15 0.83922
68 50 46 10 15 0.85364

solutions of the location/dimension parameters in different generations,
obtained after introducing the noise, are listed in Table 1, for a buried
circular cylinder with the preset parameters x0 = 50, y0 = 46, R1 =
10, and R2 = 15 (all in centimeters). As shown in this table, the
correct solutions are obtained at the 68th generation. But the fitness
value corresponding to the correct solution is only 0.85364, which is
due to the noisy measurement background.

The second example is for a buried object of two rectangular layers
with electromagnetic parameters (ε1 = 4ε0, µ1 = µ0, σ1 = 0) for layer
1 and (ε2 = 8ε0, µ2 = µ0, σ2 = 0) for layer 2. As illustrated in
Fig. 6, Layer 1 is of length L1 and width W1, its upper-left corner
is located at (x1, y1); and Layer 2 is of length L2 and width W2, its
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Figure 6. Geometry of a buried rectangular cylinder with two layers.
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Figure 7. Reconstruction images of the buried rectangular cylinder
at different generations.
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upper-left corner is located at (x2, y2). Since x2 can be found from
x2 = x1 + W1, the location and dimension of the buried object can
be completely specified by x1, y1, y2, W1, L1, W2, and L2; these seven
location/dimension parameters are the unknowns to be recovered.

In the solution of this inverse scattering problem, the GA-
calculation parameters used are the same as those used in the previous
example. In Figs. 7(b)–7(f) are shown the grey-level images of the
reconstructed buried object for different generations. A good match
between the image for k = 125 depicted in Fig. 7(f) and that for the
actual object shown in Fig. 7(a) indicates that the location/dimension
parameters of the buried object have been successively recovered at the
125th generation. One notes that more generations are needed for the
GA-based inverse calculation for solving this problem comparing with
that used in the previous example (125 vs. 57) because more unknowns
are to be reconstructed (7 vs. 4).

To evaluate the efficiency of the proposed numerical technique
based on the parallel genetic algorithm, it is of interest to compare
its computation time to that without parallel computer configuration.
The numerical solution of this example consumes 30 minutes using
the cluster system with 16 processors for the parallel computation.
Then, the same problem is solved using sequential computer codes with
the parallel communication and overhead removed, and the execution
time on one of the computers in the cluster system is found to be
438 minutes. From this comparison, one observes that a great deal of
computer time has been saved owing to the parallel computation.

4. CONCLUSIONS

A hybrid numerical technique based on parallel genetic algorithm (GA)
and the FDTD method is proposed for determining the location and
dimensions of 2D inhomogeneous objects buried in a lossy earth. The
GA employed is a robust stochastic search and optimization procedure
suitable for solving the nonlinear inverse scattering problem. To reduce
its heavy computation burden, the GA-based inverse computation
is parallelized and run on a multi-processor cluster system. The
FDTD method is selected for the forward calculation of the scattered
field by the buried inhomogeneous object because it can effectively
model an inhomogeneous object of arbitrary shape. Sample numerical
results are presented for 2-D buried objects with layered structures.
An analysis of the numerical results shows that the proposed hybrid
numerical technique is able to determine the location and dimension of
an inhomogeneous 2D object buried in a lossy earth, and the parallel
computation can effectively reduce the required computation time.
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