Vol. 54
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-02-17
Fast Analysis of Electromagnetic Transmission through Arbitrarily Shaped Airborne Radomes Using Precorrected-FFT Method
By
, Vol. 54, 37-59, 2005
Abstract
A fast technique based on the Poggio, Miller, Chang, Harrington and Wu (PMCHW) formulation and the precorrected-FFT method is presented for accurate and efficient analysis of electromagnetic transmission through dielectric radomes of arbitrary shape (including airborne radomes). The method of moments is applied to solve the integral equations in which the surfaces of the radomes are modeled using surface triangular patches and the integral equations are converted into a linear system in terms of the equivalent electric and magnetic surface currents. Next, the precorrected-FFT method, a fast approach associated with O(N 1.5 log N) or less complexity, is used to eliminate the requirement of generating and storing the square impedance matrix and to speed up the matrix-vector product in each iteration of the iterative solution. Numerical results are presented to validate the implementation and illustrate the accuracy of the method.
Citation
Xiao-Chun Nie, Ning Yuan, Joshua Le-Wei Li, Tat Yeo, and Yeow-Beng Gan, "Fast Analysis of Electromagnetic Transmission through Arbitrarily Shaped Airborne Radomes Using Precorrected-FFT Method," , Vol. 54, 37-59, 2005.
doi:10.2528/PIER04100601
References

1. Gao, X. J. and L. B. Felsen, "Complex ray analysis of beam transmission through two-dimensional radomes," IEEE Trans. Antennas Propagat., Vol. 33, No. 9, 963-975, 1985.
doi:10.1109/TAP.1985.1143711

2. Einziger, P. D. and L. B. Felsen, "Ray analysis of two-dimensional radomes," IEEE Trans. Antennas Propagat., Vol. 31, No. 3, 870-884, 1983.
doi:10.1109/TAP.1983.1143156

3. Orta, R., R. Tascone, and R. Zich, "Performance degradation of dielectric radome covered antennas," IEEE Trans. Antennas Propagat., Vol. 36, No. 11, 1707-1713, 1988.
doi:10.1109/8.14392

4. Wu, D. C. F. and R. C. Rudduck, "Plane wave spectrum-surface integration technique for radome analysis," IEEE Trans. Antennas Propagat., Vol. 22, 497-500, 1974.
doi:10.1109/TAP.1974.1140802

5. Hodges, R. E. and R. Samil, "Evaluation of dielectric physical optics in electromagnetic scattering," AP-S International Symposium (Digest), Vol. 3, No. 6, 1742-1745, 1993.

6. Arvas, E., A. Rahhalarabi, U. Pekel, and E. Gundogan, "Electromagnetic transmission through a small radome of arbitrary shape," IEE Proc.-Microw. Antennas Propag., Vol. 137, No. 6, 401-405, 1990.

7. Arvas, E. and S. Ponnapali, "Scattering cross section of a radome of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 37, No. 5, 655-658, 1989.
doi:10.1109/8.24194

8. Gordon, R. K. and R. Mittra, "Finite element analysis of axisymmetric radomes," IEEE Trans. Antennas Propagat., Vol. 41, No. 7, 975-981, 1993.
doi:10.1109/8.237631

9. Yurchenko, V. B., A. Altinas, and A. Nosich, "Numerical optimization of a cylindrical reflector-in-radome antenna system," IEEE Trans. Antennas Propagat., Vol. 47, No. 4, 668-673, 1999.
doi:10.1109/8.768806

10. Li, L. W., M. S. Leong, P. S. Kooi, T. S. Yeo, and Y. L. Qin, "Radiation of an aperture antenna covered by a spherical-shell chiral radome and fed by a circular waveguide," IEEE Trans. Antennas Propagat., Vol. 46, No. 5, 664-671, 1998.
doi:10.1109/8.668909

11. Li, L. W., M. S. Leong, L. Zhou, T. S. Yeo, and P. S. Kooi, "Improved analysis of antenna radiation from circular aperture covered by a dielectric hemispherical radome shell," IEE Proc. — Microw. Antennas Propag., Vol. 147, No. 2, 144-150, 2000.
doi:10.1049/ip-map:20000217

12. Abdel Moneum, M. A., Z. Shen, J. L. Volakis, and O. Graham, "Hybrid PO-MoM analysis of large axis-symmetric radomes," IEEE Trans. Antennas Propagat., Vol. 49, No. 12, 1657-1666, 2001.
doi:10.1109/8.982444

13. Lu, C. C., "Dielectric radome analysis using multilevel fast multipole algorithm," 2001 AP-S International Symposium and URSI National Radio Science Meeting, Vol. 4, 8-13, 2001.

14. Huang, X. J. and Y. W. M. Chia, "The effect of radome on the transmitted electromagnetic field," 1998 AP-S International Symposium and URSI National Radio Science Meeting, 21-26, 1998.

15. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

16. Phillips, J. R., "Error and complexity analysis for a collocation-grid-projection plus precorrected-FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels," Proc. of 1995 Copper Mountain Conference on Multigrid Methods, No. 4, 1995.

17. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, Vol. 16, No. 10, 1059-1072, 1997.
doi:10.1109/43.662670

18. Nie, X. C., L. W. Li, N. Yuan, T. S. Yeo, and Y. B. Gan, "Fast analysis of scattering by arbitrarily shaped three-dimensional objects using the precorrected-FFT method," Microwave and Opt. Techn. Letters, Vol. 38, No. 1, 30-35, 2002.
doi:10.1002/mop.10962

19. Nie, X. C., L. W. Li, and N. Yuan, "Precorrected-FFT algorithm for solving combined field integral equations in electromagnetic scattering," J. of Electromagn. Waves and Appl., Vol. 16, 1171-1187, 2002.

20. Yuan, N., T. S. Yeo, X. C. Nie, and L. W. Li, "A fast analysis of scattering and radiation of large microstrip antenna arrays," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2218-2226, 2003.
doi:10.1109/TAP.2003.811082

21. Phillips, J. R., "Error and complexity analysis for a collocation-grid-projection plus precorrected-FFT algorithm for solving potential integral equations with Laplace or Helmholtz kernels," Proc. of 1995 Copper Mountain Conference on Multigrid Methods, No. 4, 1995.

22. McLaren, A. D., "Optimal numerical integration on a sphere," Mathematics of Computation, Vol. 17, 361-383, 1963.
doi:10.2307/2003998

23. Topsakal, E., M. Carr, J. Volakis, and M. Bleszynski, "Galerkin operators in adaptive integral method implementations," IEE Pro..