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Abstract—A fast technique based on the Poggio, Miller, Chang,
Harrington and Wu (PMCHW) formulation and the precorrected-
FFT method is presented for accurate and efficient analysis of
electromagnetic transmission through dielectric radomes of arbitrary
shape (including airborne radomes). The method of moments is
applied to solve the integral equations in which the surfaces of the
radomes are modeled using surface triangular patches and the integral
equations are converted into a linear system in terms of the equivalent
electric and magnetic surface currents. Next, the precorrected-
FFT method, a fast approach associated with O(N1.5 logN) or less
complexity, is used to eliminate the requirement of generating and
storing the square impedance matrix and to speed up the matrix-vector
product in each iteration of the iterative solution. Numerical results are
presented to validate the implementation and illustrate the accuracy
of the method.
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1. INTRODUCTION

Layered dielectric radomes are often used to house airborne scanning
radar antennas to protect the antennas from a variety of environmental
and aerodynamical effects. However, the presence of radome will affect
the radiation performance of the enclosed antennas significantly due to
interactions of the antenna fields with the radome. A careful analysis
of the antenna-radome system is thus necessary in order to investigate
what the effects of a dielectric radome are and how the effects can
be minimized. So far, a variety of different approaches have been
employed to investigate the modification of the radiation pattern of
an antenna covered by a radome. These approaches can be divided
into three categories: 1) high-frequency (HF) methods such as the
ray-tracing technique [1–3]; the plane wave spectrum-surface integral
technique [4], the physical optics method (PO) and dielectric physical
optics (DPO) technique [5]; 2) low-frequency (LF) methods such as the
method of moments (MoM) [6, 7]; the finite element method (FEM)
[8], and the method of regularization (MOR) [9]; and 3) analytical
methods such as the dyadic Greens function method and iterative
interaction procedure [10, 11] which provide more physical insight but
are applicable to radomes of special shapes.

An important assumption of high frequency methods is that
the structures have smooth surfaces and electrically large radii of
curvature. For most realistic airborne radomes, this assumption is
valid. For some types of radomes that have sharp tips such as the ogive
or cone, however, HF approaches cannot be employed since the locally
flat surface assumption is not valid in that region. On the other hand,
low frequency (LF) methods, although providing accurate solution to
the problem as compared to the HF solution, are associated with
extensive computational requirements. To deal with this problem, one
way is to use a hybrid method that combines the LF method to model
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the tip region of the dielectric radome and the HF method to treat the
flat smooth section of the radome, as in [12]. Another way is to use
fast algorithms to reduce the memory requirement and computational
complexity of the LF methods. For instance, in [13] and [14],
the multilevel fast multiple algorithm (MLFMA) and the conjugate
gradient fast Fourier transform (CG-FFT) method were, respectively,
used to solve the volumetric integral equations (VIE) associated with
antenna-radome interaction problems. In this paper, we present an
alternative method which belongs to the latter type. In the approach,
the problem is formulated by a set of coupled integral equations in
terms of the equivalent surface electric and magnetic currents. The
method of moments (MoM) is applied to solve the integral equations.
The surfaces of the radome are approximated by planar triangular
patches and the Rao-Wilton-Glisson (RWG) functions [15] are used for
both expansion and testing functions. Next, the resultant numerical
system is solved iteratively and the precorrected-FFT (P-FFT) method
is employed to expedite the solution procedure and reduce the memory
requirement. The resultant method can be applied to efficiently and
accurately analyze dielectric radomes of sizes much larger than that can
be analyzed by the conventional MoM. It is evident that it provides
higher accuracy than high frequency methods.

In the following section, the surface integral equation formulation
for a layered dielectric radome of arbitrary shape is first presented.
Next, the method of moments solution and the precorrect-FFT
approach are discussed in detail. In Section 3, some numerical
examples are presented to illustrate the accuracy and capability of
the method. Spherical and Von Karman radomes of different size
are studied and both the field inside the radome under a plane wave
incidence (the “receiving mode”) and the radiated far field due to
an elementary dipole inside the radome (the “transmitting mode”)
are computed. The computed results are in excellent agreement with
the available published data, which demonstrates the applicability and
accuracy of the method.

2. FORMULATION

2.1. Surface Integral Equation Formulation

Consider a dielectric radome of arbitrary shape residing in a
homogenous background medium with parameters (ε0, µ0), as shown
in Fig. 1. The outer surface of the radome is denoted by S0 and the
inner surface is denoted by S1. The radome has a permittivity ε1 and
a permeability of µ1. The radome can be excited by two impressed
sources: the incidence plane wave from outside (the receiving-mode
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Figure 1. Geometry of an arbitrary shaped radome excited by two
sets of impressed sources.

source) and the radiation field of a dipole inside the radome (the
transmitting-mode source). Let (Einc

R , Hinc
R ) and (Einc

T , Hinc
T ) denote

the incident fields produced by the receiving-mode source and the
transmitting-mode source respectively. It is noted that the incident
field is defined as the field that exists in the absence of the radome.

By invoking the equivalence principle, three equivalent problems
are formulated, valid for the region external to the surface S0 (Region
1), bounded by S0 and S1 (Region 2), and internal to S1 (Region 3),
respectively. By introducing equivalent electric and magnetic currents
(J0,M0), (−J0,−M0), and (J1,M1), (−J1,−M1) on opposite sides
of the surfaces S0 and S1 respectively, and enforcing the boundary
conditions on the electric and magnetic fields across the interfaces, the
following coupled field integral equations are obtained in terms of the
unknown

[E0(J0)+E1(J0)+E1(J1)+E0(M0)+E1(M0)+E1(M1)]
∣∣∣
tan

= −Einc
R

∣∣∣
tan

on S0, (1a)

[E1(J0)+E0(J1)+E1(J1)+E1(M0)+E0(M1)+E1(M1)]
∣∣∣
tan

= −Einc
T

∣∣∣
tan

on S1, (1b)

[H0(J0)+H1(J0)+H1(J1)+H0(M0)+H1(M0)+H1(M1)]
∣∣∣
tan

= −Hinc
R

∣∣∣
tan

on S0, (1c)



Progress In Electromagnetics Research, PIER 54, 2005 41

[H1(J0) + H0(J1) + H1(J1) + H1(M0) + H0(M1) + H1(M1)]
∣∣∣
tan

= −Hinc
T

∣∣∣
tan

on S1, (1d)

where Ei(Jj) and Hi(Jj), (i = 0, 1 and j = 0, 1) represent the
electric and magnetic fields produced by the electric currents Jj in the
homogenous media i respectively. Ei(Mj), Hi(Mj) represent the fields
produced by the magnetic current Mj in the homogenous medium i.
The subscript ‘tan’ denotes the tangential components. Eq. (1) is
known as the PMCHW formulation for dielectric objects [15], which is
found to be free of interior resonances and yield accurate and stable
solutions. The fields in Eq. (1) can be computed from the surface
current by

Ei(Jj) = −jωAij −∇Φij (2a)

Ei(Mj) = −∇× Fij

εi
(2b)

Hi(Jj) =
∇× Aij

µi
(2c)

Hi(Mj) = −jωFij −∇Ψij (2d)

where the various vector potentials Aij(r) and Fij(r) and the scalar
potentials Φij(r) and Ψij(r) are given by

Aij(r) =
µi

4π

∫
Sj

Jj(r′)Gi(r, r′)dS(r′) (3a)

Fij(r) =
εi
4π

∫
Sj

Mj(r′)Gi(r, r′)dS(r′) (3b)

Φij(r) = − 1
4πjωεi

∫
Sj

∇′
S · Jj(r′)Gi(r, r′)dS(r′) (3c)

Ψij(r) = − 1
4πjωµi

∫
Sj

∇′
S · Mj(r′)Gi(r, r′)dS(r′) (3d)

with Gi(r, r′) is the Green’s function defined by

Gi(r) =
e−jki|r−r′|

|r − r′| (4)

and ki being the propagation constant in medium i. In the above
expressions and subsequent formulations, the time dependence of ejωt
is assumed and suppressed.
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2.2. Method of Moments Solution

For numerical solution of Eq. (1), the dielectric surfaces S0 and S1 are
discretized into small triangular patches and the equivalent electric and
magnetic currents Ji,Mi(i = 0, 1) are expanded using the RWG basis
functions [15]:

Ji(r′) =
Nis∑
n=1

Iinfin(r′) (5a)

Mi(r′) = η0

Nis∑
n=1

Minfin(r′) (5b)

where Iin and Min are the unknown expansion coefficients, Nis denotes
the number of edges on the surface Si of the triangulated model, fin(r′)
is the nth RWG basis function associated with the nth edge on Si and
η0 is the characteristic impedance in free space. The factor of η0 is
required since the H-field equation is normalized by η0. Substituting
(5) into (1) and testing (1a), (1b) with fm and (1c), (1d) with η0fm
result in a N ×N (N = 2(N0s + N1s)) matrix equation of the form

ZI = V. (6)

The matrices Z, I and V can be written in the following partitioned
form

Z =




[ZJ0J0
mn ] [ZJ0J1

mn ] [T J0M0
mn ] [T J0M1

mn ]
[ZJ1J0

mn ] [ZJ1J1
mn ] [T J1M0

mn ] [T J1M1
mn ]

[TM0J0
mn ] [TM0J1

mn ] [Y M0M0
mn ] [Y M0M1

mn ]
[TM1J0

mn ] [TM1J1
mn ] [Y M1M0

mn ] [Y M1M1
mn ]


 (7a)

I = [[I0n] [I1n] [M0n] [M1n]]T (7b)

V = [[V0m] [V1m] [H0m] [H1m]]T (7c)

where “T” denotes the transpose of matrix. Elements of the subvectors
[V0m] and [H0m] are given by

V0m = −
∫
T0m

f0m(r) · Einc
R (r)dr (8a)

H0m = −
∫
T0m

f0m(r) · η0Hinc
R (r)dr. (8b)

Similar expressions can be found for elements of [V1m] and [H1m]
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by replacing the subscript 0 by 1 and the incident fields Einc
R (r)

and Hinc
R (r) by Einc

T (r) and Hinc
T (r), respectively. Elements of the

submatrices of the square moment matrix Z can be readily obtained
from Eq. (1) and the definitions in formulas in (2) and (3). For clarity
of the description, we provide the following expressions for some of the
submatrices:

ZJ0J0
mn = −jω

∫
T0m

f0m(r) · [A0mn + A1mn] dr

+
∫
T0m

∇s · f0m(r) [Φ0mn + Φ1mn] dr (9a)

T J0M0
mn = −

∫
T0m

η0f0m(r) · ∇ ×
[
F0mn

ε0
+

F1mn

ε1

]
dr (9b)

TM0J0
mn =

∫
T0m

η0f0m(r) · ∇ ×
[
A0mn

µ0
+

A1mn

µ1

]
dr (9c)

Y M0M0
mn = −jω

∫
T0m

f0m(r) · η2
0 [F0mn(r) + F1mn(r)] dr

+
∫
T0m

∇s · f0m(r) · η2
0 [Ψ0mn(r) + Ψ1mn(r)] dr. (9d)

Expressions for other submatrices can be written in a similar form but
are omitted here. In (9), the vector and scalar potential integrals take
the following form, for i = 0, 1:

Aimn(r) =
µi

4π

∫
Tn

fn(r′)Gi(r, r′)dr′ (10a)

Φimn(r) = − 1
4πjωεi

∫
Tn

∇′
s · fn(r′)Gi(r, r′)dr′ (10b)

Fimn(r) =
εi
4π

∫
Tn

fn(r′)Gi(r, r′)dr′ (10c)

Ψimn(r) = − 1
4πjωµi

∫
Tn

∇′
s · fn(r′)Gi(r, r′)dr′. (10d)

It is noted that Fimn and Ψimn produced by the nth magnetic
current expansion function are respectively the dual of Aimn and Φimn

produced by the same function with an electric current expansion
function. These duality relationships will be used in the following
precorrected-FFT approach.
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2.3. Precorrected-FFT Method

The data storage requirement of the full matrix generated by the
method of moments is of the order of O(N2), while the complexity of a
direct solution is O(N3). Therefore, we are interested in developing a
fast algorithm with lower order of complexity and storage requirements.
The precorrected-FFT (P-FFT) method is a fast method associated
with O(N3/2 logN) or less complexity. It was originally proposed by
Philips and White [16, 17] to solve the electrostatic integral equations
associated with capacitance extraction problems and was recently
extended by the present authors to the analysis of scattering by large
conducting objects [18, 19] and microstrip antenna arrays [20]. Like
other fast algorithms, the P-FFT method also works on approximating
the far-zone interactions. The acceleration of the solution in (6) is
accomplished by filling only an order-N subset of Z and computing
the matrix-vector product ZI in two parts, that is

ZI = ZnearI + ZfarI. (11)

where Znear is sparse and contains only the entries associated with
elements separated less than a threshold distance, and ZfarI contains
the remaining interactions that will be computed by an approximation
technique.

To implement the P-FFT algorithm, the entire object is enclosed
in a uniform rectangular grid. The triangular patches are sorted
into cells formed by the grid, with each cell containing only a few
triangular patches. Then the matrix-vector multiplication can be
approximated in a four-step procedure: (1) to project the element
source distributions to point sources on the uniform grid, (2) to
compute the potentials at the grid points due to the grid sources
by FFT-accelerated convolutions, (3) to interpolate the grid-point
potentials onto the elements, and (4) to add the precorrected direct
nearby interactions.

First, we need to construct the projection operators that can
replace the set of element source distributions in the cell with an
equivalent set of point sources on the grid. As noted before, the
only difference between Fimn and Aimn, Ψimn and Φimn is a constant
due to the use of the same expansion functions for the electric and
magnetic currents. Therefore, although both electric and magnetic
currents exist in the problem, we need only to construct the projection
operators for one current, for example, the electric current. Without
loss of generality, the projection of the magnetic currents can then be
performed using the same projection operators.

Assume that the nth RWG basis function is contained in a
given cell k. The current and charge (either electric or magnetic)
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distributions on the two nth RWG patches are then projected onto the
grids surrounding the nth edge. Point sources on the grids can be set at
the cell vertices (grid-order p = 2), or at half the spacing of the vertices
(grid-order of p = 3), etc., as desired for accuracy. Select Nc test points
on the surface of a sphere of radius rc whose center is coincident with
the center of the cell k. The radius rc can be arbitrarily selected as long
as all the cell vertices are entirely enclosed in the sphere. Enforcing the
vector potential produced by the electric currents at the p3 grid points
to match that produced by the original electric current distributions
on the triangular patches at the test points, we obtain

Apt
i,q = Ãgt

i,q, q = 1, 2, · · ·Nc, i = 0, 1 (12)

where Apt
i,q and Ãgt

i,q denote the vector potentials at the qth test point
due to the original patch currents and the grid currents respectively,
whose expressions are given by

Apt
i,q(r

t
q) =

µi

4π

∫
S
Infn(r′)

e−jki|rt
q−r′|

|rtq − r′| dS′ (13a)

Ãgt
i,q(r

t
q) =

µi

4π

p3∑
l=1

(
Ĵx,lx̂ + Ĵy,lŷ + Ĵz,lẑ

) e−jki|rt
q−rl|

|rtq − rl|
(13b)

with rtq and rl being the position vectors at the qth test point and
the lth grid point, respectively, and Ĵx,l, Ĵy,l, Ĵz,l being the three
components of the current at the lth grid point. The subscript i
represents the medium in which the vector potentials are computed.
Substituting (13) into (12), and decomposing the patch currents into
three components yield

Pgt
i,uĴi,u = Ppt

i,uIn, u = x, y, z (14)

where Ĵi,u ∈ Rp3×1 denote the vectors consisting of the u components
of the currents at the grid point Pgt

i,u ∈ RNc×p3
represent the mappings

between the grid currents and the test-point potentials given by

Pgt
i,u(q, l) =

µi

4π
e−jki|rt

q−rl|

|rtq − rl|
. (15)

By construction, the relative positions of the grid points and the test
points are identical for each cell, and therefore Pgt

i,u are the same for
each cell. The component, Ppt

i,u ∈ RNc×N(k), represent the mappings
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between the patch currents and the test-point potentials, N(k) is the
number of the basis functions contained in cell k. Ppt

i,u can be written
as

Ppt
i,u(q, n) =

µi

4π

∫
S
fn(r′) · ûe−jki|rt

q−r′|

|rtq − r′| dS′. (16)

Since the collocation Equation (14) is linear in the patch and grid
current distributions, the contribution of the nth basis function in cell
k to Ĵi,u can be represented by three column vectors Wi,u(k, n), given
by

Wi,u(k, n) = [Pgt
i,u]

+Ppt,n
i,u (17)

where Ppt,n
i,u denotes the nth column of Ppt

i,u and [Pgt
i,u]

+ indicates the
generalized inverse of Pgt

i,u. Wi,u(k, n), identifies the current projection
operator computed in medium i. For any basis function n in cell k,
this projection operator generates a subset of the grid currents Ĵi,u.
The contribution to Ĵi,u from the currents in cell k can be computed
by summing over all the currents in this cell, i.e.,

Ĵi,u =
∑
n

Wi,u(k, n)In (18)

Patch currents outside cell k may contribute to some of the elements
of Ĵi,u in the case of shared grids. Following the above procedure, we
can project the patch current Infn onto the p3 grid points surrounding
cell k.

The above formulae are applicable to the projection of the patch
current. Similarly, by matching the scalar potential due to the p3 grid
charges and that due to the actual patch charge distribution at the
test points, we can construct the charge projection operator Wi,c(k, n).
The accuracy of the above projection scheme depends on the proper
selection of the test points rt. The criteria for the choice of the test
points can be found in [21, 22]. Note that since the Green’s functions
changed due to the constitutive properties for different media, the
projections are performed for each medium separately, namely, when
the vector or scalar potentials in medium i are to be computed,
the projection operators corresponding to medium i are used for the
projection. For a multilayer dielectric object such as the dielectric
radomes, the present projection method does not require extra FFTs
in the computation of the grid potentials, as compared with the AIM
which employs a Green’s function independent projection operator
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[23]. On the contrary, the present projection method yields a much
more accurate projection since it fully explores the information of the
Green’s functions.

Once the patch source distributions have been projected onto
uniform grids, the relationship between the vector and scalar potentials
at the grid points and the grid sources is in fact a 3-D convolution.
The convolutions can be efficiently computed using the fast Fourier
transform (FFT) due to the Toeplitz property of the Green’s function
matrix. Hence, the vector and scalar potentials at the grid points can
be computed by

Âu = DFT−1
{
DFT{G} ·DFT{Ĵu}

}
, u = x, y, z (19a)

Φ̂u = DFT−1 {DFT{G} ·DFT{q̂}} (19b)

where DFT and DFT−1 denote the FFT and inverse FFT,
respectively. The entries of G are the Green’s functions between grid
points in the corresponding medium. In practice, each convolution
requires one forward and one inverse three-dimensional FFT. The FFT
of the kernel matrix G need to be computed only once.

After the grid potentials are computed, the potentials on the
triangular patches can be obtained through interpolation. Assume that
[V (k, j)]T denotes the interpolation operator and H denotes the inverse
and direct FFT operations in (19). Thus, the projection, followed
by convolution and interpolation, gives the grid approximation to the
potentials

AG = V THWJ (20a)

ΦG = V THWc(∇ · J). (20b)

Both the projection and the interpolation operators are represented by
sparse matrices.

The difficulty with the above three steps is that the near-field
interactions are poorly approximated in the projection/interpolation.
A more accurate calculation of the interactions between nearby patches
is needed and the inaccurate contribution from the use of the grid also
need to be removed. This process is referred to as “pre-correction”.
Define a “pre-corrected” direct interaction operator

P̃ (k, l) = P (k, l) − V (k)TH(k, l)W (l). (21)

The exact vector potential A(k) and scalar potential Φ(k) for each cell
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k can be obtained by

A(k) = AG(k) +
∑

l∈M(k)

P̃ (k, l)Jl, (22a)

Φ(k) = ΦG(k) +
∑

l∈M(k)

P̃ (k, l)(∇ · Jl) (22b)

where M(k) denotes the indices of the set of cells which are “close to”
cell k. Since for each k, M(k) is a small set and each matrix P̃ (k, l) is
also small, this step is also a sparse operation.

So far, the submatrix-vector products [ZJiJj
mn ][Ijn] and [Y MiMj

mn ]
[Mjn] (i = 0, 1, j = 0, 1) can be readily obtained, as the vector
and scalar potentials have been efficiently computed using the above
precorrected-FFT formulation. However, the evaluation of the
products [T JiMj

mn ][Mjn] and [TMiJj
mn ][Ijn] still need further treatment. In

[22] where the AIM was applied to the dielectric scattering problems,
the authors evaluated these products by projecting the ∇×fn operator
onto the uniform grid as well as the basis function fn and its divergence
∇ · fn. In this paper, we apply a simplified approach which avoids
the projection of the ∇ × fn operator. For example, the elements of
[TM0J1

mn ][I1n] can be written in the following form

TM0J1
mn I1n =

∫
T0m

η0f0m(r) · ∇ × A1mnI1n
µ1

dr

=
∫
T0m

η0f0m(r) · 1
µ1

{(
∂A1mn,zI1n

∂y
− ∂A1mn,yI1n

∂z

)
x̂

+
(
∂A1mn,xI1n

∂z
− ∂A1mn,zI1n

∂x

)
ŷ

+
(
∂A1mn,yI1n

∂x
− ∂A1mn,xI1n

∂y

)
ẑ
}
dr (23)

The partial derivatives in (23) can be replaced by the corresponding
differences that can be computed through the vector potentials at
several points in the vicinity of the observation point. Knowledge of
these potentials can be readily obtained through interpolation since
the vector potentials at grid points have been computed by the FFTs.
This approach only requires several extra interpolations and avoids
additional efforts to project the ∇ × fn operator and to perform the
corresponding FFTs.
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Figure 2. The normalized magnitude of the x-component of the total
electric field at various points along the normalized z-axis inside a
spherical radome.

3. NUMERICAL RESULTS

The numerical examples given below serve only to validate the
implementation and illustrate the accuracy of the method. The actual
speed-up achieved by the P-FFT has already been demonstrated in
[18] and is beyond the scope of this paper.

The first example is a spherical radome of inner radius 0.9λ0

and outer radius 1.0λ0. The radome is centered at the origin and
is excited by a x-polarized, +z-traveling plane wave (receive mode).
The inner and the outer surfaces are approximated by 2108 and 2586
triangular patches respectively, leading to 14082 unknowns. For the
P-FFT method, a grid spacing of 0.1λ0 is used and the grid order is
set to be p = 3 and the near-field threshold distance to be 0.2λ0. The
normalized magnitude of the x-component of the total electric field
at various points along the z-axis inside the radome for two different
dielectric constants (εr = 2 and εr = 4) is shown in Fig. 2. Fig. 3
shows the phase of Ex. It is observed that the computed results agree
very well with the exact results [6] for both the magnitude and phase,
validating the accuracy of the present method.

The second example is a Von Karman radome (a BOR structure)
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Figure 3. Phase of the x-component of the total electric field.

as shown in Fig. 4(a). The generating curve of the radome is given by

ri =
Di

2
√

π

{
cos−1

(
1 − 2zi

Li

)
− 1

2
sin−1

[
2 cos−1

(
1 − 2zi

Li

)]} 1
2

, i = 0, 1

(24)
with

ri =
√

x2
i + y2

i . (25)

The tip of the ith surface is at (0, 0, Li/2) and its base is a circle of
diameter Li/2 at z = −Li/2. In this example, the lengths of the outer
and the inner surfaces L0 and L1 are respectively 2.0λ0 and 1.8λ0 while
the corresponding diameters D0 and D1 are λ0 and 0.9λ0 respectively.
The dielectric constant is 4.0. Each of the surfaces is discretized into
2800 triangles, resulting in a total of 16800 unknowns. Fig. 4(b) shows
the magnitude of Ex inside the radome when it is illuminated by a
x-polarized plane wave incident along the z axis from the top. The
field is computed along the z-axis. Both results obtained by the P-
FFT method and the traditional MoM [6] are shown for comparison.
Again, good agreement is observed.

Fig. 5 shows the normalized magnitude of Ex at the center of
a Von Karman radome illuminated by a θ-polarized plane wave with
the incident angle φi = 0◦ and θi varies from 90◦ to 180◦. The size
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Figure 4. (a) The geometry of a Von Karman radome (b) The
normalized magnitude of Ex along the z-axis inside the Von Karman
radome.
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Figure 5. The normalized magnitude of Ex at the center of a Von
Karman radome versus the incident angle.

of the radome is the same as in Fig. 5 and the dielectric constant is
εr = 1.75 − j0.3. It can be seen that when θi = 180◦, the magnitude
of Ex is largest since the incident wave is actually x-polarized in this
case. When θi = 90◦, the incident wave is z-polarized and Ex is the
cross-polar field. Therefore, it is smaller than other cases. However, Ex

cannot be neglected despite its small value, unlike in free space, where
Ex is zero when the incident field is z-polarized. This phenomenon is
known as depolarization, one of the important effects caused by the
presence of radomes.

In the above examples the radomes are excited in the receive
mode. Next, we give some examples for the transmit mode. Fig. 6
shows the far field pattern of the Eθ component transmitted through
a spherical radome due to a z-directed electric dipole placed at the
center of the radome. Two different sizes (inner radius of 0.5λ0 and
0.9λ0) and two different dielectric constants (εr = 1.0 and 2.5) are
considered. The thickness of the radome wall is 0.1λ0 in all cases.
The magnitude is normalized by the peak value (occurs at θ = 90◦) of
the far field radiated by the same dipole in free space. It can be seen
that the two curves for different sizes coincide with each other when εr

equals 1.0, since the dielectric media is free space in this case. Besides,
when εr equals 2.5, the field transmitted through the smaller radome
is larger than the field radiated by the dipole in free space whereas
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Figure 6. Far field pattern of the field (Eθ) transmitted through a
spherical radome.

the field transmitted through the larger radome is smaller than the
field radiated by the dipole in free space. This is probably due to the
interactions of the radiation field with the radome. The exact results
from [6] are also given in the figure by hollow circles.

Fig. 7 shows the far field pattern of the Eφ component for the
same example. As we know, the z-directed dipole does not radiate φ
component field in free space. This fact is validated by the computed
results since Eφ are sufficiently small (less than 0.005) to be negligible
when εr equals 1.0. However, Eφ cannot be ignored when the radome
actually exists (εr does not equal 1.0) due to the depolarization effect
caused by the radome. For example, when εr equals 2.5, the peak
value of Eφ is up to 0.025 and 0.02 respectively for rin = 0.5λ0 and
rin = 0.9λ0. It is also observed that the strongest depolarization occurs
in the direction near θ = 0◦ and θ = 180◦. Further, the larger the
radome the weaker is the depolarization effect.

In the last example, we consider a larger spherical dielectric
radome with a 9-element uniform dipole array located on the z-axis
inside the radome [13]. The inner radius of the radome is 1.2 m
and the thickness is 0.08 m. The dipole array operates at 300 MHz.
The inter-element spacing is 0.25λ and the fifth element is located at
the center of the shell. The inner surface and the outer surface are
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discretized into 5346 and 6072 triangular patches respectively, leading
to totally 34254 unknowns. The radiated fields of the dipole array
through the shell at a distance of r = 100 m under two cases (εr = 1.0
and εr = 2.0− j1.0) are computed and shown in Fig. 8. The radiation
of the array in free space is also plotted as reference and all the curves
are normalized with respect to the maximum value of the radiated
field in free space (appear at θ = 90◦). As expected, the radiation of
the radome-array system under the case of εr = 1 totally agrees with
that of the array in free space. Under the case of εr = 2.0 − j1.0,
the radiated fields are weakened at the directions near θ = 90◦ but
enhanced at the directions near θ = 0◦ due to the presence of the
radome. The computed results also agree very well with the exact
solution in [13]. For this example, it is estimated that the conventional
MoM requires over 8.74 Gbyte memory and will cost 36.8 hours to
obtain the final solution on a Pentium 2.4 G PC if enough memory
is available. However, the present method requires only 179 Mbyte
memory, about 2% that of the conventional MoM and yield an over
73.4% reduction in the CPU time.

4. CONCLUSION

A fast method based on the surface integral equation (SIE) and the
precorrected-FFT algorithm is presented for the analysis of antenna
radome systems. The problem is formulated using the PMCHW
approach for dielectric objects. The integral equations are solved using
the method of moments (MoM) and the precorrected-FFT algorithm
is used to compute the matrix-vector product in iterations. The
application of the P-FFT algorithm significantly reduces the memory
requirement and computational cost of the MoM. Therefore, the
present method can be applied to analyze radomes of size much larger
than that can be handled by the conventional MoM. Several numerical
examples were presented, illustrating the accuracy and capability of the
method. Radomes of different shapes and parameters are considered.
Both the interior fields received inside the radome under a plane wave
incidence and the radiated far fields of an elementary dipole inside the
radome are investigated. Although for clarity of the description, we
only presented the formulations for a single layered dielectric radome,
the present method is in fact applicable to any objects consisting
of piecewise homogeneous bodies, even composite conducting and
dielectric objects.
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