Vol. 53
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2005-02-11
Asymptotic Solutions for Backscattering by Smooth 2D Surfaces
By
Progress In Electromagnetics Research, Vol. 53, 189-226, 2005
Abstract
igh-frequency asymptotic expansions of electric and magnetic fields are obtained at a perfectly conducting smooth 2-D surface illuminated by a plane incident wave in two cases of TE and TM linear polarization. Diffraction corrections up to the second order of the inverse large parameter p = ak (where a is a curvature radius at the specularly reflected point, and k is a field wavenumber) to the geometrical optics fields, and specifically to their phases, backscattering cross-sections (HH and VV for TE and TM polarizations, correspondingly), as well as the polarization ratio HH/VV, are derived for the specular points of a general form. These general results are applied to backscattering from cylinders with conical section directrixes (circle, parabola, ellipse and hyperbola), and a number of new compact explicit equations are derived, especially for elliptic and hyperbolic cylinders illuminated at an arbitrary incidence angle relative to their axes of symmetry.
Citation
Iosif Fuks, "Asymptotic Solutions for Backscattering by Smooth 2D Surfaces," Progress In Electromagnetics Research, Vol. 53, 189-226, 2005.
doi:10.2528/PIER04092102
References

1. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, Part I, 1953.

2. Watson, G. N., "The diffraction of electrical waves by the earth," Proc. Roy. Soc. (London), Vol. A95, 83-99, 1918.

3. Wait, J. R., Electromagnetic Radiation from Cylindrical Structures, Pergamon, 1959.

4. Kouyoumjian, R. G., "Asymptotic high-frequency methods," Proc. IEEE, Vol. 53, No. 8, 864-876, 1965.

5. Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi, Electromagnetic and Acoustic Scattering by Simple Shapes, Hemisphere Publishing Corp., 1987.

6. Keller, J. B., R. M. Lewis, and B. D. Seckler, "Asymptotic solution of some diffraction problems," Comm. Pure Appl. Mathem., Vol. 9, 207-265, 1956.

7. Keller, J. B., "Geometrical theory of diffraction," J. Opt. Sci. Am., Vol. 52, 116-130, 1962.

8. Babic, V. M. and V. S. Buldyrev, Short-wavelength Diffraction Theory, Springer-Verlag, 1991.

9. Borovikov, V. A. and B. Ye. Kinber, Geometrical Theory of Diffraction, The Institution of Electrical Engineers, 1994.

10. Kravtsov, Yu. A. and Yu. I. Orlov, Geometrical Optics of Inhomogeneous Media, Springer-Verlag, 1990.

11. Fuks, I. M., "Reflection and refraction of a wave of arbitrary shape on a curvilinear surface (in Russian)," Izv. VUZ., Vol. 8, No. 6, 772-779.

12. Gel'chinskii, B. Ya., "Reflection and refraction of an elastic wave of arbitrary form in the case of a curved interface," Soviet Phys. -Doklady, Vol. 3, No. 1, 186-188, 1958.

13. Fok, V. A., "Generalization of reflecting formulas to the case of reflection of an arbitrary wave from a surface of arbitrary shape," Soviet Phys.-JTF, Vol. 20, No. 11, 961-978, 1950.

14. Keller, J. B. and H. B. Keller, "Determination of reflected and transmitted fields by geometrical optics," J. Opt. Soc. Am., Vol. 40, No. 1, 48-52, 1950.

15. Bass F. G. and I. M. Fuks, Wave Scattering from Statistical ly Rough Surfaces (in Russian), Wave Scattering from Statistical ly Rough Surfaces (in Russian), Vol. 93, Nauka.

16. Schensted, C. E., "Electromagnetic and acoustical scattering by a semi-infinite body of revolution," J. Appl. Phys., Vol. 26, 306-308, 1955.
doi:10.1063/1.1721982

17. Lee, S.-W., "Electromagnetic reflection from a conducting surface: geometrical optics solution," IEEE Trans. Antennas Propagat., Vol. AP-23, No. 2, 184-191, 1975.
doi:10.1109/TAP.1975.1141040

18. Fuks, I. M., "High-frequency asymptotic expansions of a backscattered cross-section and HH/VV polarization ratio for smooth two-dimensional surfaces," Waves Random Media, Vol. 14, 143-156, 2004.
doi:10.1088/0959-7174/14/2/005

19. West, J. C., "Low-grazing-angle (LGA) sea-spike backscattering from plunging breaker crests," IEEE Trans. Geosci. Remote Sensing, Vol. 40, 523-526, 2002.
doi:10.1109/36.992830

20. Brekhovskikh, L. M., "Wave diffraction by a rough surface," Parts 1 and 2, Vol. 23, No. 3(9), 289-304, 1952.

21. Isakovich, M. A., "Wave scattering from a statistically rough surface," Sov. Phys. JETF, Vol. 23, No. 3(9), 305-314, 1952.

22. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, 1972.