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Abstract—High-frequency asymptotic expansions of electric and
magnetic fields are obtained at a perfectly conducting smooth 2-
D surface illuminated by a plane incident wave in two cases of
TE and TM linear polarization. Diffraction corrections up to the
second order of the inverse large parameter p = ak (where a is
a curvature radius at the specularly reflected point, and k is a
field wavenumber) to the geometrical optics fields, and specifically
to their phases, backscattering cross-sections (HH and VV for TE
and TM polarizations, correspondingly), as well as the polarization
ratio HH/VV, are derived for the specular points of a general form.
These general results are applied to backscattering from cylinders with
conical section directrixes (circle, parabola, ellipse and hyperbola), and
a number of new compact explicit equations are derived, especially for
elliptic and hyperbolic cylinders illuminated at an arbitrary incidence
angle relative to their axes of symmetry.
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1. INTRODUCTION

The high-frequency asymptotic of electromagnetic fields backscattered
by a smooth body with an arbitrary shape is of great interest for
many physical problems and engineering applications. The progress
in numerical methods applications to the diffraction problem does
not diminish the actuality of obtaining the high-frequency asymptotic
expansions in the analytical form: the higher the frequency, the
more discretization points are needed, and the cost of computing
is increasing catastrophically. The analytical results for the high-
frequency limit play a valuable role as tests for existing and developing
computer codes.

For a simply shaped body, such as a circular or parabolic cylinder,
sphere or ellipsoid, when the separation of variables in the Helmholtz
equation is possible, the exact solution of the diffraction problem can
be represented as an expansion on the infinite series of eigen functions
of the Helmholtz equation (see, e.g., [1]). Even in these simplest cases,
obtaining the expansion of the diffracted field in a series of reversed
powers of wave frequency ω is not a trivial problem, because of a
drastic increase in the number of terms in these series which have to
be taken into account. The advanced methods of complex analysis (the
so-called “Watson transformation” [2] or its modifications [3, 4]) can
be employed to obtain the high-frequency asymptotic expansions in
these cases. However, the number of body shapes for which the exact
solutions are known is limited only by a few cases (see, e.g., [5]), and
in a general case, only some approximative methods can be used for
this problem solving.

One of the most powerful methods of an asymptotic solution of the
general diffraction problem was suggested and developed in the set of
fundamental papers ([6] and [7] and references therein). This approach
later evolved in numerous works and was generalized for solving many
other diffraction problems. Over time, it was designated as a Ray
Method [8], and now it underlies the Geometrical Theory of Diffraction
(see [9, 10] and bibliographies therein). In the framework of this
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method, the asymptotic solution of the diffraction problem is obtained
in two steps. The first step is the solution of the eikonal equation,
which gives the geometrical optics solution of the problem, i.e., the
shape of the reflected wave phase fronts, and the ray congruence as
the set of normals to them. The amplitude and the phase of the
diffracted wave can be found in the second step by solving the set
of so-called, “transport equations” for the coefficients of expansion of
the solution in an asymptotic series of reversed powers of the wave
frequency ω. The first coefficient corresponds to the geometrical optics
(GO) result: the phase of the reflected wave is equal to the length
of the optical path along the corresponding ray, and the amplitude
of the scattered wave is proportional to the square root of the wave
front Gaussian curvature, which guarantees the energy conservation
inside every infinitesimal ray tube. The high-order terms take into
account the phenomenon of the “transverse diffusion” of the wave field
at the surfaces of wave fronts (i.e., in directions perpendicular to the
rays): they can be obtained from the set of recursive equations by
integrating the derivatives of the eikonal along the rays. This solution
can be represented in a general form for an arbitrarily shaped 2-D and
3-D body for all possible specific cases of a diffraction problem: for the
incident wave with an arbitrary wavefront (plane, cylindrical, spherical,
etc.); at every spatial point located at the arbitrary distance along the
corresponding ray, including observation points in the shadow (in this
case, so-called “diffraction rays” replace the GO rays); for scattering in
different directions (including, in particular, the backscattering), etc.
In principle, having the set of the recursive equations, it is possible to
obtain the coefficients of terms ∼ 1/ωn of any order of n.

On the other hand, the wide generality of the Ray Method has
some disadvantages: the coefficients of the field asymptotic expansion
are represented as a quadratures of spatial derivatives of an eikonal,
which is assumed to be found in the first step of the problem solving,
i.e., in the GO limit. Despite the fact that the solution of the last
problem was obtained in [11] for reflection of the arbitrarily shaped
incident wave front by the specular point of a general form (see also [12–
14], and references in [15], section 28), the resulting equations obtained
are so cumbersome that it is impossible to perform the next steps to
obtain any result beyond the GO limit, i.e., to perform the analytical
integration along the ray of the eikonal derivatives in a general case,
even for the first corrections ∼ 1/ω to the GO formulae. (Note that to
obtain the diffraction corrections to the phase of the reflected wave, it
is necessary to obtain terms of the order ∼ 1/ω, and to the amplitude
– of the order ∼ 1/ω2 ). Apparently, this fact is the reason that the
applicability of the Ray Method for solving the wave scattering problem
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(in the light zone, where at least one specular point exists) even for the
2-D case was demonstrated in [6] only for the circular and parabolic
cylinder (with the incidence along the parabola axis only). In these
cases the set of rays has the simplest form, and the full set of recursive
equations for all coefficients of the wave field asymptotic expansion can
be obtained in an explicit form. In a 3-D case the explicit equations
were obtained also only for the simplest shaped bodies. In the case
of arbitrarily shaped bodies, only the first correction (∼ 1/ω) to the
GO result of diffraction by a body of revolution was obtained in [16].
It has such a cumbersome appearance (see also Eq. (I.122) at page 28
in [5]) that the next coefficient for the term of order of ∼ 1/ω2 was
not obtained up to now. Moreover, it has taken 20 years (see [17]) to
discover some errors in [16], where this result was first published.

In [18], we obtained the explicit expressions for the first two
corrections (∼ 1/ω and ∼ 1/ω2) to the GO solution in the far zone
for the wave field, backscattered from a single specular point at the
smooth, perfectly conducting 2-D body of an arbitrary shape. The
fields and their normal derivatives at the surface were obtained with
an accuracy of 1/ω2 by iteration of the corresponding surface integral
equations for TE and TM incident waves. The backscattered fields in
the far zone were found as an asymptotic expansion of the Huygens-
Kirchhoff integral with the same accuracy of 1/ω2. The advantage
of the obtained results over the Ray Method equations is that the
final formulae in [18] contain in the explicit form the derivatives of the
surface profile at the specular point (up to the sixth order), but not the
derivatives of the eikonal. As distinct from the classical Ray Method,
which gives the result in the most general form, these equations are
obtained only for the specific case of a plane wave backscattering from
the single specular point (line at the 2-D surface) in the far zone,
where there are no caustics and the scattered wave have a cylindrical
divergency.

In this paper, we employ the equations derived in [18] to obtain the
high-frequency asymptotic expansions of EM fields backscattered by
the cylindrical surfaces having a conic section directrix (circle, ellipse,
parabola and hyperbola). Corrections of ∼ 1/ω2 to the GO formulae
are obtained for two polarizations of the incident field as functions
of the angle of incidence. These equations greatly expand upon the
number of analytical expressions that can be found in the reference
book [5]. These corrections also can play a significant role in comparing
the numerically calculated cross-sections in [19] with the analytical
results for a smooth 2-D surface with known differential parameters.

The paper is organized as follows. In Section 2, the high-frequency
expansion of TE and TM fields at the surface are obtained up to
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the terms on the order of ∼ 1/k2 by two consecutive iterations of the
corresponding integral equations. These expansions are used in Section
3 for deriving the far-zone backscattered fields, using the Huygens-
Kirchhoff principle. In Section 4, the general results derived above
are applied to the cylinders with a conic section directrix, and explicit
equations for phase and backscattering cross-sections are obtained and
analyzed. In the Conclusions, a summation of the most significant
results is presented.

2. ASYMPTOTIC EXPANSIONS FOR THE WAVE
FIELDS AT A PERFECTLY CONDUCTING SURFACE

Hereinafter we consider scattering of the monochromatic wave of
frequency ω, and the phase factor exp (−iωt) is omitted. In the
geometrical optics limit, backscattering (retroreflection) from a smooth
surface S is caused only by the specular points, where the direction
N of normal-to-the-surface S is opposite to the direction of the wave
vector k = kα0 of the incident wave ∼ exp (ikR), where k = ω/c is
the wave number, c is a wave propagation velocity, and α0 is the unit
vector of the propagation direction of the incident plane wave. For a
2-D surface, without a loss of generality, we can specify the equation
of the surface S in the form z = Z (x), with the origin of the Cartesian
coordinates (x, y, z) in the specular point O, the axis Oz directed along
the normal N, and the axis Oy directed along the surface S directrix
(Fig. 1).

The arbitrary polarized incident wave can be represented as a
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Figure 1. The frames of reference related to the specular reflecting
point O at normal incidence and to OS at inclined incidence.
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linear superposition of two eigenwaves: the TE wave with the electric
field vector E0 = (0, E0, 0) directed along the surface generatrix Oy,
and the TM wave with the magnetic field vector H0 = (0, H0, 0). For a
perfectly conducting surface S and for these two cases of polarization,
the scattered fields Esc = (0, Esc, 0) and Hsc = (0, Hsc, 0) in an
arbitrary point R can be represented as surface integrals, according
to the Huygens-Kirchhoff principle:

Esc (R) = −
∫

S

∂E (r)
∂n

G0 (R, r) dr, (1)

Hsc (R) =
∫

S
H (r)

∂

∂n
G0 (R, r) dr, (2)

where G0 (R, r) is the Green function of the Helmholtz equation for a
free space

G0 (R, r) =
1

4π |R − r|e
ik|R−r|, (3)

and ∂/∂n implies the derivative along the normal n to the surface
S at the point of integration r ∈S (see Fig. 1). The total magnetic
field H (r) and the normal derivative ∂E (r) /∂n of the total electrical
field E (r) at surface S, in turn, are the solutions of the corresponding
integral equations:

∂E (r)
∂n

= 2
∂E0 (r)
∂n

− 2
∫

S

∂E (r′)
∂n′

∂

∂n
G0

(
r, r′

)
dr′, (4)

H (r) = 2H0 (r) + 2
∫

S
H

(
r′

) ∂

∂n′
G0

(
r, r′

)
dr′. (5)

These two equations are entirely equivalent to the integral equations
for sound-wave pressure at free and perfectly rigid surfaces,
correspondingly.

Instead of ∂E (r) /∂n and H (r), let us introduce two new
functions ue and uh:

H (r) = uh (r) eikr, (6)
∂E (r)
∂n

= i (k · n)ue (r) eikr, (7)

and the new variable of integration ρ = r′−r in (4) and (5). Assuming
that the incident waves E0 (r) and H0 (r) have the unit amplitudes,
i.e., E0 (r) = ey exp (ikr) for TE waves and H0 (r) = ey exp (ikr) for
TM waves, where ey is a unit vector along the Oy axis and ky = 0, we
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obtain instead of (4) and (5):

ue (r) = 2 +
1
2π

∫
S
ue (r + ρ)

ρ · n
ρ3

α0 · n′

α0 · n
(ikρ− 1) eik(ρ+ρ·α0)dρ, (8)

uh (r) = 2 +
1
2π

∫
S
uh (r + ρ)

ρ · n′

ρ3
(ikρ− 1) eik(ρ+ρ·α0)dρ, (9)

where n = n (r) and n′ = n (r + ρ). In the high-frequency limiting
case k → ∞, integral terms in these equations turn to zero, which
corresponds to the tangent plane approximation (or Kirchhoff method,
see [20, 21]): at a perfectly conducting surface, the tangent component
of the magnetic field and the normal derivative of the tangent
component of the electric field are doubled, i.e., ue (r) = uh (r) = 2,
as it occurs at reflection from the perfect plane tangent to the curved
surface S at every point r ∈S. Our goal is to find the corrections to
these solutions, caused by the diffraction effects at the curved surface.

At every point r ∈S (see Fig. 1), let us introduce the local
Cartesian frame of reference (ξ, η, ζ), with axis OSζ directed along the
normal n, axis OSη directed along Oy, and, consequently, axis OSξ
is the tangent to the surface S on the plane (x,O, z). Let us set the
equation of the surface in this reference frame in the form ζ = z (ξ);
vector ρ has the following components ρ = (ξ, η, z (ξ)), and the unit
vector n′ takes the form:

n′ = n (r + ρ) =
eζ − γ√
1 + γ2

, (10)

where γ = (dz/dξ, 0, 0) is the surface slope at the point r′ = r + ρ.
Change from integration over dρ in (8) and (9) to integration over
the plane ρ⊥ = (ξ, η) tangent to the surface S at point r, using the
relations:

dρ =
dρ⊥

nζ (r + ρ)
, dρ⊥ = dξdη, nζ (r + ρ) =

1√
1 + γ2

. (11)

Taking into account ρ =
√
ρ2
⊥ + z2 (ξ), and expanding the kernels of

the integral equations (8) and (9) in series of z (ξ) up to its second
power, we can represent (8) and (9) in the form:

ue (r) = 2 +
1
2π

∫∫ ∞

−∞
ue (r + ρ)

ikρ⊥ − 1
ρ3
⊥

z (ξ) ×
[
1 − ik cos θz (ξ) + tan θ

dz (ξ)
dξ

]
eikρ⊥(1+sin θ cos ϕ)dξdη, (12)
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uh (r) = 2 +
1
2π

∫∫ ∞

−∞
uh (r + ρ)

ikρ⊥ − 1
ρ3
⊥

[
z (ξ) − ξ

dz (ξ)
dξ

]
×

[1 − ik cos θz (ξ)] eikρ⊥(1+sin θ cos ϕ)dξdη, (13)

where ρ⊥ =
√
ξ2 + η2, and θ is the local incident angle at r ∈S, i.e.,

α0 ·n = − cos θ, and ϕ is the azimuthal angle between the direction of
vector ρ⊥ and axis OSξ, i.e., ξ = ρ⊥ cosϕ, η = ρ⊥ sinϕ. Here, we take
into account that in a high-frequency limit, for a large but finite value
of k, only the small vicinity of the point r is essential for integration
in (12) and (13), where function z (ξ) can be represented as a series
expansion in powers of ξ, and the limits of integration can be expanded
to infinity, if the linear dimension of the scattered body essentially
exceeds the Fresnel zone

√
λa, where λ = 2π/k is a wavelength, and a

is a local curvature radius of the surface directrix at the point r. For
obtaining the diffraction corrections up to the terms of order k−2, it
is sufficient to consider only the first two non-vanishing terms of this
expansion:

z (ξ) = − ξ2

2a
− ξ3

3b
+ ... . (14)

Here, we take into account that dz (ξ) /dξ = 0 at ξ = 0. Substituting
(14) into (12) and (13), and introducing the dimensionless variables
p =kr and t = kρ⊥ instead of r and ρ⊥, we can represent (12), and
(13) in the form:

ue,h (p) = 2 ∓
∫ ∞

0
dt

∫ 2π

0
[Y1 (t, ϕ) + Ye,h (t, ϕ)]ue,h (p + t) dϕ, (15)

where the upper sign relates to ue (p) and the lower one to uh (p) , and
kernels Y1, Ye,h have the form:

Y1 (t, ϕ) =
(it− 1) cos2 ϕ

4πak
eit(1+sin θ cos ϕ), (16)

Ye (t, ϕ) = t cosϕ
(

2a
3bk

− tan θ
ak

+ it cosϕ
cos θ
2ak

)
Y1 (t, ϕ) , (17)

Yh (t, ϕ) = t cosϕ
(

4a
3bk

+ it cosϕ
cos θ
2ak

)
Y1 (t, ϕ) . (18)

We will seek the solutions of (15) in the form of an iteration series in
powers of 1/k :

ue,h = u
(0)
e,h + u

(1)
e,h + u

(2)
e,h + ..., (19)
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where u(n)
e,h ∼ 1/kn and u

(0)
e,h = 2. The first two iterations in (15) give

the following explicit expansion for the surface values of ue,h:

ue,h (r) = 2
{

1 ± i

2ak cos3 θ
± δe,h

[
1 + 3 sin2 θ

2 (ak cos3 θ)2
+

2 sin θ
bk2 cos5 θ

]}
,

(20)
where δe = 1 and δh = 2. It is seen that diffraction corrections to the
field surface values in the case of TM-polarization (uh) differ from the
case of TE-polarization (ue) by the signs ± and by a factor of 2 in the
second-order terms ∼ 1/k2. The spatial dependence of fields ue,h on
coordinate r ∈S is given by variations of surface parameters a, b and
local incidence angle θ, which are functions of r.

3. BACKSCATTERED FIELDS IN THE FAR ZONE

To obtain the high-frequency asymptotic expansion of backscattered
fields Esc, Hsc, we substitute the surface values of H and ∂E/∂n from
(6) and (7) into (1) and (2), correspondingly, and use representation
(20) for ue,h. For the backscattering direction, in a wave zone (kR 1)
and at a long distance R essentially exceeding the curvature radius a0

at the specular point O (for a concave surface the inequality R  a0

guarantees that the observation point is far away from the caustics of
the reflected wave field), after integration in (1) and (2) over dy in the
infinite limits (implying that the body dimension in the direction of
axis Oy exceeds essentially the linear size of the Fresnel zone

√
λR in

this direction), we obtain:

Esc, Hsc = ∓
√

k

8πiR
eikR

∫ ∞

−∞
ue,h (x) e−2ikZ(x)dx. (21)

To perform integration in (21) in an explicit form, it is necessary
to have ue,h as a function of x in a reference frame (x, y, z) related to
the specular point O (Fig. 1), where the surface equation has the form
z = Z (x), while (20) gives ue,h in the local reference frame (ξ, η, ζ).
Since the reference frame (ξ, η, ζ) can be obtained from the original
reference frame (x, y, z) by shifting the origin from point O (0, 0, 0) to
the point OS (xS , 0, zS) and consequent rotation by the angle θ, the
following simple relations exist between coordinates (ξ, ζ) and (x, z):

ξ = (x− xS) cos θ − (z − zS) sin θ,
ζ = (x− xS) sin θ + (z − zS) cos θ. (22)

This allows us to express the local surface differential parameters a and
b, introduced in (14), through the derivatives of Z (x) in the original
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frame of reference :

−1
a

≡ d2z

dξ2

∣∣∣∣
ξ=0

= cos3 θ
d2Z

dx2

∣∣∣∣
x=xS

, (23)

−2
b

≡ d3z

dξ3

∣∣∣∣
ξ=0

= cos4 θ
d3Z

dx3

∣∣∣∣
x=xS

+ 3 sin θ cos5 θ
(
d2Z

dx2

)2
∣∣∣∣∣
x=xS

.(24)

In a high-frequency limit, only the small vicinity of the specular
point O is essential in integrals in (21). To obtain the expansion of
scattered fields in the series of 1/k with accuracy 1/k2, i.e., to represent
the scattered fields in the form:

Esc = E(0) + E(1) + E(2), Hsc = H(0) +H(1) +H(2),

where E(n), H(n) ∼ 1/kn, (25)

it is necessary to expand Z (x) in series of x near the specular point O
in the exponent in the integrand (21) up to the term ∼ x6:

Z (x) �
6∑

n=2

xn

n!
Zn, Zn ≡ dn

dxn
Z (x)

∣∣∣∣
x=0

. (26)

In the geometrical optics limit (k = ∞) , from (21) it follows that:

E(0)

H(0)

}
= ∓

√
a0

2R
eikR, (27)

where a0 ≡ −
(
d2Z/dx2

)−1

x=0
is the surface curvature radius at the

specular point O. Note that (27) is valid not only for the convex surface
(a0 > 0), but for the concave one also: if a0 < 0, the fields (27) acquire
the additional phase shift π/2 caused by the caustic.

After simple but cumbrous derivations, from (21) we obtain the
following expansion of fields E and H, normalized on their geometrical
optics limits E(0) and H(0), over the inverse value of a large parameter
p = a0k  1:

E
H

}
= 1 +

i

2p

(
3q4 +

5!!
2
q23 ± 1

)

± 1
8p2

[
4δe,h + q23

(
21 ∓ 9!!q4 ∓

11!!
12

q23

)

+ q4 (18 ∓ 7!!q4) ∓ 30 (q6 + 7q3q5)] , (28)
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where E = Esc/E
(0), H = Hsc/H

(0) and qn = an−1
0 Zn/n!. It is

seen that the first-order terms ∼ 1/p depend not only on the surface
S curvature radius a0 at the specular point, but on surface third
and fourth derivatives as well. The coefficient of the second-order
term ∼ 1/p2 depends on the higher derivatives of Z (x) up to the
d6Z (x) /dx6

∣∣
x=0

.

3.1. Phase Corrections

The second terms in the right-hand side of (28) are the first-order
corrections δφe and δφh to the phase of backscattered signals for TE
and TM polarizations, correspondingly:

δφe

δφh

}
=

1
2p

(
3q4 +

5!!
2
q23 ± 1

)
. (29)

Despite the fact that these corrections depend on the third and fourth
derivatives of the surface, their difference ∆φeh depends only on the
curvature radius a0 at the specular point:

∆φeh = δφe − δφh =
1
p

=
1
a0k

. (30)

Note that ∆φeh > 0 for convex specular points with a0 > 0, and
∆φeh < 0 for the concave ones (a0 > 0). As distinct from the wave
amplitude (or the scattering cross-section) the phase of the scattered
field can be measured with a very high accuracy. From (30), it
follows that measurement of the phase difference between TE and TM
polarized scattered waves allows one to retrieve the curvature radius
a0 of the surface and its sign at the specular point.

3.2. Backscattering Cross-Sections

In 2-D geometry, when the scattered fields E,H in the far zone have
the cylindrical divergence ∼ 1/

√
R, the scattering cross-section per

unit length of the surface directrix (along the axis Oy in our case) is
defined by the equation (e.g., see (I.34) in [5]):

σ = lim
R→∞

2πR
∣∣∣∣ FF0

∣∣∣∣
2

, (31)

where F = Esc, Hsc and F0 = E0, H0 for TE- and TM- polarized
waves, correspondingly. In applications to radio wave propagation and
scattering theory, the TE polarization is referred to as “horizontal”
and is denoted as H, and TM polarization is referred to as “vertical”
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and is denoted as V. The corresponding backscattering cross-sections
σHH and σV V in our notations have the form:

σHH = lim
R→∞

2πR
∣∣∣∣Esc

E0

∣∣∣∣
2

and σV V = lim
R→∞

2πR
∣∣∣∣Hsc

H0

∣∣∣∣
2

. (32)

Substituting here Esc = E(0)E and Hsc = H(0)H , where E and H are
given by (28), and taking into account (27), we obtain:

σHH

σV V

}
= 1 − 1

4p2
[1 ∓ 6 + 18q23

(
45q23 + 50q4 ∓ 2

)
+ 24q4 (4q4 ∓ 1) + 30 (q6 + 7q3q5)], (33)

where σHH = σHH/σ0, σV V = σV V /σ0, and σ0 = π |a0| is the
backscattering cross-section from a solitary specular point (actually,
the line in 2-D case) in the geometrical optics limit p = ∞.

3.3. Polarization Ratio

From (33) it follows for the HH/VV ratio:

σHH

σV V
� 1 +

3
p2

(
1 + 6q23 + 4q4

)
. (34)

Note that in general, the first nonzero term ∼ 1/k2 in a high-frequency
expansion of the polarization ratio depends not only on the curvature
radius a0 at the specular point, but on high-order (n = 3, 4) derivatives
Zn of the surface profile as well.

Taking into account our definitions

1
a0

= −Z2, q3 =
a2

0

6
Z3, q4 =

a3
0

24
Z4, (35)

from (34) we can obtain an explicit equation for the diffraction
correction ∆ to the polarization ratio:

∆ =
σHH

σV V
− 1 =

1
2k2

(
6Z2

2 +
Z2

3

Z2
2

− Z4

Z2

)
. (36)

It is seen that in general, ∆ may be positive as well as negative,
depending on the sign and the value of the term Z4/Z2. As in practice,
the scattering cross-sections σHH and σV V are measured in dB. The
sign of the HH/VV ratio measured in dB coincides with the sign of ∆,
and below we will indicate this fact, naming ∆ as the HH/VV ratio or
the polarization ratio itself, keeping in mind that σHH

σV V
(dB) � 4.34∆.
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3.4. Dependence on the Angle of Incidence

Asymptotic expansions (28) of the backscattered fields, and all
above particular equations for phase and backscattering cross-section
corrections to the GO result (27), are written in a form that depends
on derivatives Zn ≡ dnZ (x) /dxn of surface equation Z (x) in the local
frame of reference (x, y, z) attached to the specular point O (see Fig.
1). If we consider a plane incident wave propagating in the direction α
(instead of α0 as was previously considered), which makes an arbitrary
angle θ with the axis Oz of the “laboratory” frame of reference (x, y, z),
where the surface equation has the form z = Z (x), we can use all the
above results with substitution of Zn → zn ≡ dnz (ξ) /dξn, where z (ξ)
is the surface equation in the local frame of reference (ξ, η, ζ), attached
to the corresponding specular point OS (see Fig. 1). To obtain the
dependence of backscattered field parameters on the angle of incidence
θ, it is necessary to evaluate the derivatives zn through the derivatives
Zn at the specular point OS , which now does not coincide with the
origin O of the coordinates (x, y, z). The transformation from the
“laboratory” coordinate system (x, y, z) to the local coordinate system
(ξ, η, ζ) is given by (22), which we employed above to obtain equations
(23) and (24), connecting z2 and z3 with Z2 and Z3. The full set of
equations connecting zn with Zn for n � 6 has the form:

z1 = 0,
z2 = cos θZ2x

2
1,

z3 = cos θ
[
Z3x

3
1 + 3Z2x1x2

]
,

z4 = cos θ
[
Z4x

4
1 + 6Z3x

2
1x2 + Z2

(
3x2

2 + 4x1x3

)]
,

z5 = cos θ
[
Z5x

5
1+10Z4x

3
1x2+5Z3

(
3x1x

2
2+2x2

1x3

)
+5Z2 (2x2x3+x1x4)

]
,

z6 = cos θ
[
Z6x

6
1 + 15Z5x

4
1x2 + 5Z4

(
9x2

1x
2
2 + 4x3

1x3

)
+15Z3

(
x3

2+4x1x2x3+x2
1x4

)
+Z2

(
10x2

3+15x2x4+6x1x5

)]
. (37)

Here, all derivatives Zn are taken at the specular point OS (xS , zS),
where zS = Z (xS) and xS is the solution of the equation:

dZ (x)
dx

∣∣∣∣
xS

= − tan θ, (38)

and derivatives xn ≡ dnx/dξn have the following explicit form:

x1 = cos θ,
x2 = sin θ cos3 θZ2,

x3 = sin θ cos4 θ
[
Z3 + 3 sin θ cos θZ2

2

]
,
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x4 = sin θ cos5 θ
[
Z4 + 5 sin θ cos θZ2

(
2Z3 + 3 sin θ cos θZ2

2

)]
,

x5 = sin θ cos6 θ
[
Z5 + 5 sin θ cos θ

(
3Z4Z2 + 2Z2

3

)
+ 105 sin2 θ cos2 θZ2

2

(
Z3 + sin θ cos θZ2

2

)]
. (39)

Substituting in (28), and in all equations that follow from it,
qn = an−1zn/n! and p = ak, where a is a surface curvature radius
at the specular point OS , given by the equation:

1
a

= −z2 = − cos3 θZ2, (40)

we obtain the high-frequency asymptotic expansion of scattered fields
depending on the incidence angle θ for an arbitrary surface, which
equation Z (x) is given in the ”laboratory” frame of reference (x,O, z),
which is not connected with the specular point OS . In the next section,
we obtain from these general equations the explicit formulae for 2-D
(i.e., cylindrical) surfaces with conic section directrixes.

4. ASYMPTOTIC EXPANSIONS FOR FIELDS
BACKSCATTERED FROM A CYLINDER WITH A
CONIC SECTION DIRECTRIX

4.1. The Circular Cylinder

We take the equation of the circular cylindrical surface in the form:

z2 + x2 = a2
0, |x| � a0. (41)

It is evident from the circular symmetry of the problem in this
particular case that asymptotic expansions of backscattered fields do
not depend on the incident angle θ. Therefore, it is enough to consider
the case of θ = 0, and take the surface equation in the form:

Z (x) =
√
a2

0 − x2, |x| � a0. (42)

The specular point is located at the point (0, a0), and only the even
derivatives of Z (x) are not equal to zero, which results in the following
formulae for qn:

q4 = −1
8
, q6 = − 1

16
, q3 = q5 = 0. (43)

Substituting these equations for qn into (28), we obtain the asymptotic
expansion for backscattered fields:

E = 1 +
5i
16p

+
127

512p2
, (44)



Progress In Electromagnetics Research, PIER 53, 2005 203

H = 1 − 11i
16p

− 353
512p2

. (45)

These equations coincide with the high-frequency asymptotic expan-
sion of exact solutions given by equations (2.31) and (2.63) in [5].

From (44) and (45), we obtain the corrections to the phases of
backscattered fields:

δφe =
5

16p
; δφh = − 11

16p
. (46)

The positive phase shift δφe to the TE -polarized (horizontal
polarization HH ) wave is equivalent to the ray length increasing, i.e., to
shifting the specular reflecting point from the actual specular point OS

inside the cylinder by distance se = δφe/k = 5a0/16p2 to the spurious
specular point Oe (see Fig. 2a). Similarly, the negative sign of δφh

for the TM polarized wave (vertical polarization VV ) is equivalent
to shifting the reflecting point OS outside the cylinder by distance
sh = −δφh/k = 11a0/16p2, which exceeds the length of inside shifting
sh more than two times. The distance s = se + sh between this two
spurious specular points Oe and Oh is equal to a0/p

2, in accordance
with the general equation (30) for the phase difference ∆φeh. Note
that for a concave surface in the vicinity of the specularly reflecting
point OS , the opposite situation occurs (Fig. 2b): for a TE polarized
wave the spurious reflecting point shifts outside the body, and for a
TM polarized wave it shifts inside.

From (33), we obtain the high-frequency expansions of the
backscattering cross-sections:

σHH = σ0

(
1 +

19
32p2

)
; σV V = σ0

(
1 − 29

32p2

)
, (47)

and for the polarization ratio we have from (34):

σHH

σV V
� 1 +

3
2p2

. (48)

It is worth to note that diffraction effects result in increasing the
backscattering cross-section for HH polarization and decrease it for
VV polarization.

4.2. The Parabolic Cylinder

The equation for the surface of the parabolic cylinder has the form:

Z (x) = − x2

2a0
, (49)
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Figure 2. The interpretation of the diffraction corrections to the
phases of backscattered fields as shifting of the actual specular point
OS to the spurious specular pointOe (HH polarization) and toOh (V V
polarization) for a) convex and b) concave surfaces.

where a0 > 0 is the parabola curvature radius at the apical point O.
The location of the specular point OS is determined by the equations:

xS = a0 tan θ, zS = −1
2
a0 tan2 θ. (50)

The surface curvature radius a at the specular point OS , determined
by (40), depends on the incident angle θ:

a =
a0

cos3 θ
, (51)
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and the GO backscattering cross-section σ0 increases as θ increases:

σ0 = πa =
πa0

cos3 θ
. (52)

All surface derivatives Zn for n � 3 are equal to zero, and from (37)
and (39) it is possible to obtain the explicit equations for zn:

zn = (−1)n+1 cosn+1 θ sinn−2 θ

2n−2an−1
0

(2n− 3)!!. (53)

After substituting qn = an−1zn/n!, the asymptotic expansions (28)
take the form:

E = 1 +
i

2p
cos3 θ +

cos4 θ
(
2 cos 2θ − sin2 θ

)
4p2

, (54)

H = 1 − i

2p
cos3 θ − cos4 θ

(
4 cos 2θ + sin2 θ

)
4p2

, (55)

where we have retained the definition p = a0k for the large parameter
introduced above. In the specific case θ = 0 these equations take the
simple form:

E = 1 +
i

2p
+

1
2p2

, (56)

H = 1 − i

2p
− 1
p2
, (57)

which coincides with results obtained in [6] (see also Chapter 7.2 in
[5]).

From (54) and (55), it follows that the corrections δφe and δφh to
the GO phase of scattered fields for TE and TM waves have the same
value, but differ by sign:

δφe = −δφh =
cos3 θ

2p
=

1
2ak

, (58)

and the general equation (30) for their difference holds:

∆φeh = δφe − δφh =
1
ak
. (59)

From (58) it follows that displacements se and sh of the spurious
specular points (see Fig. 2a), introduced in the previous subsection
for a circular cylinder, are equal to each other for a parabolic cylinder:

se = sh =
a0

2p2
cos3 θ, (60)
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Figure 3. The dependence of diffraction corrections ∆HH (solid line)
and ∆V V (long-dashed line) to the backscattering cross-sections from
a parabolic cylinder on angle of incidence θ; the short-dashed line
corresponds to the HH/V V polarization ratio ∆HV .

and the distance s = se + sh between them decreases rapidly as the
incident angle θ increases, because of curvature radius a increasing, as
it follows from (51).

The asymptotic expansions of the backscattering cross-sections,
normalized on σ0, can be obtained directly from (54) and (55):

σHH = 1 +
cos4 θ

(
5 cos 2θ − sin2 θ

)
4p2

, (61)

σV V = 1 − cos4 θ
(
7 cos 2θ + sin2 θ

)
4p2

. (62)

The dependence on the angle of incidence θ of the diffraction
corrections ∆HH = p2 (σHH − 1) and ∆V V = p2 (σV V − 1) to the GO
backscattering cross-sections, normalized by the factor p2, is depicted
in Fig. 3. It is seen that, as the incident angle θ increases, the
diffraction corrections for the backscattering cross-sections decrease
rapidly (as ∼ cos6 θ) from their absolute maximum values ∆HH = 5/4
and ∆HH = −7/4 at θ = 0. With the further increasing of θ, they
change the sign at θpH = arctan

(√
5/6

)
� 42.4◦ for σHH , and at

θpV = arctan
(√

7/6
)

� 47.2◦ for σV V , and then they tend to zero
when θ → π/2.
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For the polarization ratio, from (61) and (62) it follows:

σHH

σV V
� 1 +

3 cos4 θ cos 2θ
p2

. (63)

The normalized correction to the polarization ratio ∆HV = p2∆, where
∆ is introduced in (36) as ∆ = σHH/σV V − 1, is shown in Fig. 3 by
the short-dashed line. It also decreases as ∼ cos6 θ from its maximal
value ∆HV = 3 at θ = 0, and changes sign at θ = 45◦. The similar
rapid decrease of the polarization ratio (∼ cos6 θ) was obtained in [18]
for backscattering from a statistically rough surface after statistical
averaging.

It is easy to obtain all the above parameters averaged over the
incident angle θ (or parabola axis Oz orientation relative to the
direction of incident wave propagation) in the interval (−π/2, π/2):

〈δφe〉 = −〈δφh〉 =
1
2p

〈
cos3 θ

〉
=

2
3πp

, 〈∆φeh〉 =
4

3πp
, (64)

〈∆HH〉 =
19
64
, 〈∆V V 〉 = −29

64
, 〈∆HV 〉 =

3
4
, (65)

where 〈...〉 denotes the angular averaging:

〈f (θ)〉 =
1
π

∫ π/2

−π/2
f (θ) dθ. (66)

Note that the averaged diffraction corrections (65) to the backscatter-
ing cross-sections from the parabolic cylinder with curvature radius a0

at the apical point O, are exactly two times smaller in comparison with
those (47), (48) for a circular cylinder with the same radius.

It is worth emphasizing that diffraction corrections ∆HH , ∆V V

to the backscattering cross-sections are normalized by the GO
backscattering cross-section σ0 (θ) (52), which tends to infinity as
(π/2 − θ)−3 when θ → π/2, and 〈σ0 (θ)〉 = ∞ because of divergency
of the integral (66). This divergency is caused by increasing the local
curvature radius a at the specular point OS as a0/ cos3 θ when θ → π/2.
All our consideration is based on the assumption that R  a, which
restricts the applicability of the results obtained above by the incident
angles θ far enough from π/2: cos θ  (a0/R)1/3 .

4.3. The Elliptic Cylinder

We choose the ellipse equation in the form:

z2

c2
+
x2

b2
= 1, c � b. (67)
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Here, b is the length of a small semi-axis, c is the length of a large semi-
axis (usually it is denoted as a, but we retain this notation for the local
curvature radius at the specularly reflecting point OS). Because of the
ellipse symmetry relative to the axes Oz and Ox, we can consider the
incident angles θ only in the interval (0, π/2) , and take the surface
equation Z (x) in the form:

Z (x) =

√
c2 − x2

r2
, r =

b

c
� 1, |x| � b. (68)

The semi-axis ratio r is connected with the ellipse eccentricity ε by
the relation r =

√
1 − ε2, so that r = 1 corresponds to the circle, and

r = 0 corresponds to the parabola with the axis of symmetry Oz. It is
convenient, for simplification of the equation below, to introduce the
curvature radius a0 at the apical (top) point O (0, c) of the surface:

a0 =
b2

c
= br = cr2, (69)

and rewrite (68) in the form:

Z (x) =
1
r

√
a2

0 − r2x2. (70)

The location of the specular reflecting point OS (xS , zS) at the surface
is determined by equation (38), the solution of which has the form:

xS =
a0 tan θ√

1 + r2 tan2 θ
, zS = Z (xS) , (71)

and for the derivatives Zn ≡ dnZ/dxn of the surface equation (70) at
the specular reflecting point OS , we obtain:

Z2 = −
(
1 + r2 tan2 θ

)3/2

a0
,

Z3 = −3
r2

a2
0

tan θ
(
1 + r2 tan2 θ

)2
,

Z4 = −3
r2

a3
0

(
1 + 5r2 tan2 θ

) (
1 + r2 tan2 θ

)5/2
,

Z5 = −15
r4

a4
0

tan θ
(
3 + 7r2 tan2 θ

) (
1 + r2 tan2 θ

)3
,

Z6 = −45
r4

a5
0

(
1+14r2 tan2 θ+21r4 tan4 θ

) (
1+r2 tan2 θ

)7/2
. (72)
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The curvature radius a at the specular reflecting point OS is
determined by (40):

a (θ) =
a0(

cos2 θ + r2 sin2 θ
)3/2

, (73)

and in the GO optics limit the backscattering cross-section (for both
polarizations) takes the form:

σ0 (θ) =
πa0(

cos2 θ + r2 sin2 θ
)3/2

. (74)

For r = 1, (74) coincides with the backscattering cross-section σ0 = πa0

from the circular cylinder, and for r = 0 it transforms into (52) for the
parabolic cylinder. For an arbitrary value of r in the interval [0, 1] and
θ = 0, the backscattering cross-section (74) is equal to the one for the
circular cylinder with radius a0, and for θ = π/2 it transforms into
the backscattering cross-section from the circular cylinder with radius
a (π/2) = a0/r

3 = c2/b.
Averaging (74) over all the possible angles of incidence θ (or over

the arbitrary orientations of ellipse relative to the direction of the
incident wave), according to definition (66), leads to the formula:

〈σ0 (θ)〉 =
L

2
, (75)

where L = 4cE
(
ε2

)
is the ellipse circumference, and E

(
ε2

)
is a complete

elliptic integral of the second kind (e.g., [22], Chapter 17.4):

E
(
ε2

)
=

∫ π/2

0

(
1 − ε2 sin2 θ

)1/2
dθ. (76)

It is easy to prove that equation (75) is valid not only for an elliptic
cylinder, but for a cylinder with an arbitrary convex directrix having
length L. For a 3-D case, the analogous general result was recently
obtained by A. G. Voronovich (private communication): the scattering
cross-section from an arbitrary convex body in a GO limit (disregarding
absorption and multiple reflections inside the body), averaged over its
orientation, is equal to |V |2 S/4, where S is the area of the body surface
and V is the Fresnel reflection coefficient at appropriate polarization.

Substituting the set of Zn given by (72) into (39) and (37), we
obtain the explicit equations for the surface profile derivatives zn at
the local frame of reference at the specularly reflecting point OS . To
obtain the high-frequency expansions of the backscattered field, we can
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employ the general equation (28), where we set qn = an−1zn/n! and
substitute p by ak.

The first order ∼ 1/k terms in (28) give the following equations
for the diffraction corrections δφe and δφh to the GO phase of the
scattered fields and for their difference ∆φeh:

δφe =
8

(
cos2 θ + r2 sin2 θ

)2 − 3r2

16p
(
cos2 θ + r2 sin2 θ

)1/2
, (77)

δφh = −8
(
cos2 θ + r2 sin2 θ

)2 + 3r2

16p
(
cos2 θ + r2 sin2 θ

)1/2
, (78)

∆φeh = δφe − δφh =

(
cos2 θ + r2 sin2 θ

)3/2

p
=

1
ak
, (79)

where p = a0k, as it is everywhere above. It is easy to verify that
in the limiting cases r = 1 and r = 0 these equations transform to
(46), (58) and (59) obtained above for circular and parabolic cylinders,
correspondingly. Averaging these equations over all the incident angles
θ gives the following results:

〈δφe〉 =
1

24πp
[
16

(
1 + r2

)
E

(
ε2

)
− 17r2K

(
ε2

)]
, (80)

〈δφh〉 = − 1
24πp

[
16

(
1 + r2

)
E

(
ε2

)
+ r2K

(
ε2

)]
, (81)

〈∆φeh〉 =
2

3πp
[
2

(
1 + r2

)
E

(
ε2

)
− r2K

(
ε2

)]
, (82)

where K (ε) is a complete elliptic integral of the first kind:

K
(
ε2

)
=

∫ π/2

0

(
1 − ε2 sin2 θ

)−1/2
dθ. (83)

The dependence of the averaged phase corrections (80), (81) and (82)
on the semi-axis ratio is depicted in Fig. 4.

From the general equation (33), we obtain the expansions
of the backscattering cross-sections and HH/VV polarization ratio
normalized by their GO limit (74):

σHH

σV V

}
= 1 +

1
512p2

(
cos2 θ + r2 sin2 θ

) 4∑
n=0

{
AH

2n

AV
2n

cos (2nθ) , (84)
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Figure 4. The phase corrections for backscattered fields from the
elliptic cylinder, averaged over all incident angles θ, as functions of
the ellipse semi-axis ratio r: for HH polarization (solid line), for V V
polarization (long-dashed line), and for the phase difference between
them (short-dashed line). The left-hand side of these plots corresponds
to the parabolic cylinder (r = 0) and the right-hand side corresponds
to the circular cylinder (r = 1).

where coefficients AH
2n and AV

2n have the form:

AH
0 = 145

(
1 + r8

)
− 20r2

(
1 + r4

)
+ 54r4,

AH
2 = −64

[
4

(
1 − r8

)
− r2

(
1 − r4

)]
,

AH
4 = 4

(
1 − r2

)2 [
41

(
1 + r4

)
+ 50r2

]
,

AH
6 = 64

(
1 − r4

) (
1 − r2

)2
, AH

8 = 11
(
1 − r2

)4
, (85)

AV
0 = −215

(
1 + r8

)
− 20r2

(
1 + r4

)
+ 6r4,

AV
2 = −16

[
23

(
1 − r8

)
− 2r2

(
1 − r4

)]
,

AV
4 = −20

(
1 − r2

)2 [
11

(
1 + r4

)
+ 14r2

]
,

AV
6 = −80

(
1 − r2

)3 (
1 + r2

)
, AV

8 = −13
(
1 − r2

)4
. (86)

For θ = 0, from these equations it follows:

σHH = 1 +
1

4p2

(
5 − 3r2 +

3
8
r4

)
, (87)
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Figure 5. The dependence of diffraction corrections ∆HH (horizontal
polarization) to the backscattering cross-sections from the elliptical
cylinder on the angle of incidence θ for different semi-axis ratio r.

σV V = 1 − 1
4p2

(
7 − 3r2 − 3

8
r4

)
. (88)

The expansions for θ = π/2 can be obtained from (87) and (88) directly,
only by changing the notations for semi-axes c ⇔ b, i.e., by replacing
r → 1/r, a0 → c2/b = a0/r

3 and p→ p/r3:

σHH = 1 +
r2

4p2

(
5r4 − 3r2 +

3
8

)
, (89)

σV V = 1 − r2

4p2

(
7r4 − 3r2 − 3

8

)
. (90)

The dependence of diffraction corrections ∆HH = p2 (σHH − 1) and
∆V V = p2 (σV V − 1) on the incidence angle θ is depicted in Fig. 5 (HH
polarization) and Fig. 6 (VV polarization) for the set of parameter r.
The horizontal lines for r = 1 correspond to the circular cylinder values
19/32 � 0.59 and −29/32 � −0.91 for ∆HH and ∆V V , according to
(47). The curves for r = 0 correspond to the parabolic cylinder and
they coincide with the solid and long-dashed lines depicted in Fig. 3 for
HH and VV polarizations, correspondingly. It is worth emphasizing
that all curves in Fig. 5 and Fig. 6 correspond to ellipses with a different
semi-axis ratio r, but with the same curvature radius a0 at the apical
point O(0, c), which is the specularly reflecting point for θ = 0. Despite
the fact that all ellipses have the same curvature at the specular point
O, the diffraction corrections ∆HH and ∆V V to the backscattering
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Figure 6. The same as in Fig. 5, except for ∆V V (vertical
polarization).

cross-sections at θ = 0 are different, because of the difference of the
high-order derivatives of the surface profile: they are maximal for the
parabola (r = 0) and minimal for the circle (r = 1). The diffraction
corrections ∆HH and ∆V V for the circle with radius a0 and for the
parabola, with the same curvature radius a0 at the top, are equal
to each other at incident angles θH � 23.0536◦ and θV � 22.892◦,
correspondingly, which are the solutions of the cubic equations for
cos2 θ:

11 cos6 θH − 6 cos4 θH =
19
8
, (91)

13 cos6 θV − 6 cos4 θV =
29
8
, (92)

which are obtained by comparing the diffraction corrections (61), (62)
for the parabolic cylinder with those (47) for the circular cylinder.
From Fig. 5 and Fig. 6 it is seen that diffraction corrections ∆HH

and ∆V V for ellipses with arbitrary semi-axis ratio r in the whole
interval (1 � r � 0) almost coincide in the small vicinity of angles θH

and θV , i.e., they do not depend on r and are equal to the corresponding
values 19/32 � 0.59 and −29/32 � −0.91 for a circular cylinder with
a curvature radius a0, which is equal to the ellipse curvature radius at
the top.

For the polarization ratio, it follows from (36):

σHH

σV V
� 1 +

3
(
cos2 θ + r2 sin2 θ

)
4p2
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·
[
1 + r4 + 2

(
1 − r4

)
cos 2θ +

(
1 − r2

)2 cos 4θ
]
. (93)

The dependence of the diffraction corrections ∆HV =p2 (σHH/σV V −1)
on the polarization ratio on the angle of incidence θ is depicted in Fig. 7.
For θ = 0, it follows from (93):

∆HV = 3
(

1 − r2

2

)
. (94)

In two limiting cases r = 0 and r = 1, this equation gives the
polarization ratio ∆HV = 3 and ∆HV = 1.5 for the parabolic and
circular cylinders correspondingly.

The diffraction correction ∆HV for a circle (r = 1) with radius a0

and for a parabola (r = 0), with the same curvature radius a0 at the
top, are equal to each other at the incident angle θHV � 22.9616◦,
which is the solution of the cubic equation for cos2 θ:

4 cos6 θHV − 2 cos4 θHV = 1. (95)

This equation follows from comparison of (63) with (48), which
give the polarization ratio for a parabolic and a circular cylinder,
correspondingly. It is seen from Fig. 7, that for all ellipses with the
semi-axis ratio r in the interval (0, 1) (i.e., from the parabolic to the
circular cylinder), in the vicinity of the incidence angle θ � θH � θV �
θHV � 23◦, the polarization ratio ∆HV takes the same value 3/2, as
for the circular cylinder with radius a0 (48).
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Figure 7. The same as in Fig. 5, except for HH/V V polarization
ratio ∆HV .
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Polarization ratio ∆HV , being positive at θ = 0 (see (94)),
decreases as the incident angle θ increases. It can vanish and change
the sign at some angle of incidence θ0, where the expression into the
square brackets in (93) turns to zero. The corresponding equation for
θ0 has the solution:

cos 2θ0 = − r2

1 − r2
. (96)

It is seen that ∆HV can change the sign only for ellipses with semi-
axis ratio r limited by an inequality r � 1/

√
2. When r increases

from r = 0 (parabola) to r = 1/
√

2, the incident angle θ0, where
∆HV = 0, changes from π/4 (for the parabola) to π/2 (for an ellipse
with the semi-axis ratio r = 1/

√
2). For ellipses with 1 � r � 1/

√
2,

the polarization ratio is always positive.
Direct averaging of ∆HH , ∆V V and ∆HV over all possible

incidence angles θ in the interval (0, π/2) , or over all possible ellipse
orientations, leads to the following simple results:

〈∆HH〉 =
1
64

[
19

(
1 + r6

)
− 3r2 (1 − r)2

]
, (97)

〈∆V V 〉 = − 1
64

[
29

(
1 + r6

)
+ 3r2 (1 − r)2

]
, (98)

〈∆HV 〉 =
3
4

(
1 + r6

)
. (99)

It is easy to ascertain that in the limiting cases r = 0 and r = 1, these
equations give the values obtained above for parabolic (65) and circular
cylinders (47), (48), correspondingly. The dependence of the averaged
diffraction corrections (97)–(99) on the incidence angle is depicted in
Fig. 8. It is worth noting that all of them depend very slowly on the
semi-axis ratio r in the wide range of r: from r = 0 (parabola) to
r � 0.8 (ellipse with an eccentricity of ε � 0.6).

4.4. The Hyperbolic Cylinder

As distinct from the previous cases, there is no exact solution for plane
incident wave diffraction by a hyperbolic cylinder. The only known
exact result is for the field produced by a line source parallel to the
axis Oy (e.g., Chapter 5 in [5]). The directrix equation for the convex
hyperbolic cylinder has the form:

z2

c2
− x2

b2
= 1, (100)



216 Fuks

0 0.2 0.4 0.6 0.8 1
r

�� 0.5

0

0.5

1

1.5

< HH >

< VV >

< HV >∆

∆

∆
−

Figure 8. The diffraction corrections to the backscattering cross-
sections from the elliptic cylinder, averaged over all incident angles
θ, as functions of the ellipse semi-axis ratio r: < ∆HH > for HH
polarization (solid line), < ∆HV > for V V polarization (long-dashed
line), and < ∆HV > for the HH/V V polarization ratio (short-dashed
line).

and we choose only one branch of its solution:

Z (x) = −
√
c2 +

x2

r2
, r ≡ b

c
� 0, −∞ < x <∞, (101)

which has two linear asymptotes when x→ ±∞:

Z (x) = −|x|
r
, |x| → ∞. (102)

As distinct from the ellipse equation (68), the parameter r is connected
with the hyperbola eccentricity ε by the formula ε =

√
1 + r2, and it

does not have the meaning of the semi-axis ratio in this subsection. The
corner angle ψ between asymptotes (102) can be expressed through the
parameter r by the relation:

ψ = π − 2 arctan
(

1
r

)
, (103)

from which it is seen that parameter r characterize the “sharpness”
of the hyperbola: when r → 0, then the angle ψ between asymptotes
(102) tends to ψ → 0, and the hyperbola transforms into parabola
(which can be considered as a sharpest hyperbola); in the opposite
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limiting case r → ∞, the asymptotes (102) make a very obtuse
corner angle (ψ → π), i.e., the hyperbola transforms into the plane
z = −c. Here, we consider the assemblage of parabolas with a constant
curvature radius a0 = b2/c at the apical point x = 0, and with varying
parameter r.

Note that (101) differs from the ellipse equation (68) only by the
sign before the factor r2. Therefore, all analytical results obtained
in the previous subsection for the elliptic cylinder can be applied for
the hyperbolic cylinder only by a formal substitution r2 → −r2 in
the equations obtained above for an elliptic cylinder. In particular,
the position of the specularly reflecting point OS at the hyperbolic
cylinder, illuminated by the plane wave at the incident angle θ (see
Fig. 1), is given by the equation:

xS =
a0 tan θ√

1 − r2 tan2 θ
, zS = Z (xS) , (104)

which is similar to (71). The only significant difference between
the elliptic and hyperbolic cylinders is that at the surface of the
elliptic cylinder the specularly reflecting point OS in the backscattering
direction exists for every incident angle θ, and its position is given by
(71), whereas for the hyperbolic cylinder, it exists only for incident
angles θ limited by the condition r tan θ < 1, which follows from (104).
When θ → θm = arctan (1/r), the local curvature radius a at the
specularly reflecting point OS tends to infinity (as follows from (73),
where r2 → −r2):

a (θ) =
a0(

cos2 θ − r2 sin2 θ
)3/2

, (105)

and the GO backscattering cross-section σ0 (θ) = πa (θ), as well as
diffraction corrections to it, tends to infinity also.

The first-order (∼ 1/p,wherep = a0k) terms in a general equation
(28) correspond to the diffraction corrections δφe and δφh to the phases
of backscattered fields at two polarizations, which are given by (77)
and (78) with the replacement r2 → −r2. The phase difference ∆φeh

between HH and VV backscattered fields is equal to 1/ (ak), where
the local curvature radius a at the backscattering specular point OS is
given by (105).

The diffraction corrections to the backscattering cross-sections are
given by (84)–(88) with substitution r2 → −r2. In particular, at θ = 0
we have from (87) and (88):

σHH = 1 +
1

4p2

(
5 + 3r2 +

3
8
r4

)
, (106)
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σV V = 1 − 1
4p2

(
7 + 3r2 − 3

8
r4

)
. (107)

For r = 0, these equations coincide with (61) and (62) for a
parabolic cylinder. Note that in (106) and (107), parameter r is not
limited by the inequality r � 1, as was the case in the previous
subsection for the elliptic cylinder, and it can be arbitrarily large
for a hyperbola with a very obtuse corner angle ψ (103) between
its asymptotes. The case r = 1 now corresponds not to the circular
cylinder, as was the case in the previous sections, but to a hyperbola
with orthogonal asymptotes, i.e., to a wedge with corner angle ψ = π/2
and the curvature radius a0 at the apical point.

From (106) it follows that the diffraction correction for σHH is
always positive at θ = 0 and it increases ∼ r4 for r  1, i.e., for
hyperbolas with a very obtuse corner angle (ψ → π). It is caused by
the fact that the higher (n > 2) derivatives Zn of the hyperbola, with
a constant curvature radius a0 at the top, increase very fast ∼ rn−2 as
parameter r increases, as follows from (72) for θ = 0 after replacement
r2 → −r2:

Z2 = − 1
a0
, Z4 = −3

r2

a3
0

, Z6 = −45
r4

a5
0

, Z2n+1 = 0, n = 1, 2, 3, ... .

(108)
The diffraction correction for σV V is negative for small r, and it changes
the sign at r � 3.1445, which is a solution of the equation

7 + 3r2 − 3
8
r4 = 0, (109)

and σV V , like σHH , increases ∼ r4 for r  1 with the same
coefficient 3/

(
32p2

)
as the diffraction correction for σHH . In Fig. 9 and

Fig. 10, the normalized diffraction corrections ∆HH = p2 (σHH − 1)
and ∆V V = p2 (σV V − 1) are depicted as functions of the incidence
angle θ for the set of parameter r. It is seen that, similar to the graphs
depicted in Fig. 5 and Fig. 6 for an elliptic cylinder, the diffraction
corrections in the case of a hyperbolic cylinder are not sensitive to the
value of parameter r in the vicinity of some specific angle of incidence
θ � 20◦. All corrections unrestrictedly increase as 1/ (θ − θm) when
incidence angle θ approaches the critical angle θm = arctan (1/r).

For the polarization ratio, it follows from (93) after replacing
r2 → −r2:

σHH

σV V
� 1 +

3
(
cos2 θ − r2 sin2 θ

)
4p2

·
[
1 + r4 + 2

(
1 − r4

)
cos 2θ +

(
1 + r2

)2 cos 4θ
]
. (110)
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Figure 9. The dependence of diffraction corrections ∆HH (horizontal
polarization) to the backscattering cross-sections from the hyperbolic
cylinder on the angle of incidence θ for different hyperbola parameters
r.
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Figure 10. The same as in Fig. 9, except for ∆V V (vertical
polarization).

The dependence of the diffraction correction ∆HV = p2 (σHH/σV V − 1)
on the angle of incidence θ for the set of parameter r into the interval
(1.4 � r � 0) is depicted in the upper panel of Fig. 11. It is seen that
the value of ∆HV is not sensitive to the parameter r in the vicinity of
some incident angle θHV which can be determined as an intersection of
two curves corresponding to r = 0 (parabola) and to r = 1 (hyperbola
with orthogonal asymptotes ψ = π/2). The equation for this angle has
the form:

7 cos2 2θ − 2 cos 2θ − 3 = 0, (111)

and for its solution we obtain θHV � 17.81◦.
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Figure 11. The same as in Fig. 9, except for the HH/V V polarization
ratio ∆HV . Lines in the lower panel correspond to normalized
polarization ratio ∆HV /r

2.

For θ = 0, it follows from (110):

∆HV = 3
(

1 +
r2

2

)
, (112)

which also can be obtained from (94) by replacing r2 → −r2. For
r2  1 the diffraction correction (112) increases ∼ r2, as distinct from
the corrections to the backscattering cross-sections (106) and (107)
which increase as ∼ r4. At θ = 0 the polarization ratio is always
positive, and it decreases as incident angle θ increases. It vanishes and
then changes the sign at the incident angle θ0, given by the equation,
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similar to (96):

cos 2θ0 =
r2

1 + r2
, (113)

which has a solution θ0 for all possible values of parameter r. This
angle of incidence θ0 decreases monotonically as parameter r increases
from θ0 = π/4 for r = 0 (parabolic cylinder) to θ0 = π/6 for
r = 1 (hyperbola with orthogonal asymptotes ψ = π/2) and tends
to zero for r → ∞. The dependence of the diffraction correction
∆HV = p2 (σHH/σV V − 1) , normalized by the factor r2, on the angle
of incidence θ for the set of parameter r into the interval (10 � r � 1)
is depicted in the lower panel of Fig. 11. Note that the normalized by
r2 polarization ratio ∆HV /r

2 at θ = 0 monotonically decreases from
4.5 for r = 1 to 1.5 for r → ∞. In contrast to corrections to the
backscattering cross-sections ∆HH and ∆V V , which tend to infinity
as 1/ (θ − θm) when incidence angle θ approaches the critical angle
θm = arctan (1/r) , the polarization ratio ∆HV tends to zero when
θ → θm, being negative in the interval θm � θ � θ0.

5. CONCLUSIONS

With consecutive iterations of the exact integral equations, we obtained
the high-frequency asymptotic expansions of the tangent component
of a magnetic field and the normal derivative of an electric field at a
perfectly conducting smooth surface illuminated by a plane incident
wave. The first-order corrections ∼ 1/k to their GO values (which
are equal to doubled corresponding values in the incident field) are
determined only by the surface local curvature radius a and the local
incident angle θ, and they differ only by sign for TE- and TM- polarized
waves. The second-order corrections ∼ 1/k2 depend also on the local
third derivative of the surface, and for TE- and TM- polarized waves
they differ not only by sign but also by a factor of 2 (doubled for TM-
polarized wave).

The scattered fields in the far zone were obtained, according
to the Huygens-Kirchhoff principle, by integrating over the surface
the corresponding surface values of a magnetic field and the normal
derivative of an electric field. As a result of these derivations, we
have found that the first-order corrections ∼ 1/k to the GO values
of the backscattered fields (which are fully determined by the surface
curvature radius a0 at the specularly reflecting point) depend on the
3rd and 4th surface derivatives, whereas the second-order corrections
∼ 1/k2 depend also on the 5th and 6th surface derivatives.

The first-order terms ∼ 1/k in these asymptotic expansions are
orthogonal to their GO values and they give the diffraction corrections
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to the phase of backscattered fields. The phase difference between TE
and TM polarized waves is determined only by the surface curvature
radius a at the specularly reflecting point, and it is equal to the inverse
value of a large parameter p = ak.

The first nonzero correction term to the backscattering cross-
sections has the order of ∼ 1/k2, and it depends on all derivatives
of the surface at the specular reflecting point up to the 6th order. In
the HH /VV polarization ratio, some of these terms are cancelled out,
and the HH /VV ratio depends only on the 2nd, 3rd and 4th local
derivatives of the surface.

We applied these general results to the specific case of
backscattering by a cylinder with a conic section directrix (circle,
ellipse, parabola and hyperbola). The most significant results of this
consideration are listed below.

1. The diffraction corrections to the phase of backscattered fields
have opposite signs for TE and TM waves: they are positive for TE
waves and negative for TM waves for convex surfaces. The absolute
values of these corrections are different in a general case. They are
equal to each other only for the parabolic cylinder and they decrease
as cos3 θ as incident angle θ increases. (The angle of incidence θ is
counted off from the direction of the longest axis of the ellipse, or from
the axis of symmetry for the parabola and hyperbola). For a circular
cylinder, the phase correction to the TM wave is almost twice as much
as that for the TE wave: their ratio is equal to 11/5.

2. For the elliptic cylinder, the diffraction corrections to the phase,
averaged over all ellipse orientations (or over all incident angles θ),
slowly depend on the ellipse semi-axis ratio r: for the TE wave they
vary from 2/ (3πp) for r = 0 (parabolic cylinder) to 5/ (16p) for r = 1
(circular cylinder); for the TM wave they vary from −2/ (3πp) at r = 0
to −11/ (16p) at r = 1.The phase difference varies from 4/ (3πp) to
1/p when r increases from 0 to 1. (Here, as everywhere in the text,
p = a0k, where a0 is a curvature radius at the surface apex point, i.e.,
the minimal curvature radius of the conic section directrix, and a0 is
assumed to be the same for all cylinders).

3. When the direction of the incident wave coincides with the
conic section main axis, i.e., θ = 0, the diffraction corrections are
positive for HH and are negative for VV backscattering cross-sections
σHH and σV V for all directrixes, with the exception of hyperbola with
r > 3.1445, which corresponds to the obtuse angles ψ > 144.7◦ between
asymptotes.

4. For the elliptic cylinder, at θ = 0, the minimal absolute values of
corrections to the backscattering cross-sections correspond to the case
r = 1 (circular cylinder) and maximal – to r = 0 (parabolic cylinder).
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Normalized by p2, these corrections vary from ∆HH = 19/32 for r = 1
to ∆HH = 5/4 for r = 0, and from ∆V V = −29/32 for r = 1 to
∆V V = −7/4 for r = 0. At the same time, the HH /VV polarization
ratio ∆HV varies from ∆HV = 3/2 for the circular cylinder to ∆HV = 3
for the parabolic cylinder.

5. When θ increases, all these corrections decrease, and at some
incident angles θ0 can vanish and even change their signs. For the
parabolic cylinder, ∆HH changes its sign at θ0 � 42.4◦, ∆V V = 0 at
θ0 � 47.2◦, and ∆HV = 0 at θ0 = 45◦.

6. At the incident angles θ, close to θ � 23◦, the diffraction
corrections to the backscattering cross-sections ∆HH , ∆V V , as well
as to the polarization ratio ∆HV , are not sensitive to the value of
the ellipse semi-axis ratio r, and they are almost the same for all
elliptic cylinders, including the circular and the parabolic cylinders in
the limiting cases r = 1 and r = 0, correspondingly. For the hyperbolic
cylinders the same effect take place at smaller angles (θ � 18◦–20◦) for
r � 1.

7. The polarization ratio ∆HV , being positive at θ = 0, decreases
for all type of cylinders with arbitrary conic section directrixes, as
θ decreases, and ∆HV changes its sign in the interval of incident
angles 90◦ � θ � 45◦ for ellipses with semi-axis ratio r varying in
the interval 1/

√
2 � r � 0. The polarization ratio ∆HV does not

change its sign, remaining positive for all incident angles for ellipses
with 1 � r � 1/

√
2.

8. For a hyperbolic cylinder, the polarization ratio ∆HV changes
its sign at the incident angle θ0, which decreases monotonically as
parameter r increases from θ0 = π/4 for r = 0 (parabolic cylinder) to
θ0 = π/6 for r = 1 (hyperbola with orthogonal asymptotes ψ = π/2),
and θ0 tends to zero for r → ∞.

9. The diffraction corrections to the backscattering cross-sections
from the hyperbolic cylinder increase ∼ r4 for r  1, and tend
to infinity when the incident angle θ approaches the critical angle
θm = arctan (1/r), i.e., when the direction of the wave propagation
α (see Fig. 1) becomes orthogonal to the hyperbola asymptote. The
polarization ratio ∆HV increases as ∼ r2 for r  1 and tends to zero
at θ → θm, remaining negative in the interval θm � θ � θ0.

10. From comparison of results obtained for cylinders with
different conic section directrixes, but with the same curvature radius
a0 at the apex point, it follows that the maximal diffraction corrections
to the GO values of backscattering cross-sections and polarization ratio
occur when the hyperbolic cylinder with r  1 (and, consequently,
with the very obtuse corner angle ψ → π) is illuminated by the wave
propagating along the hyperbola axis of symmetry, i.e., at θ = 0.
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