1. Abubakar, A. and P. M. Van Den Berg, "Total variation as a multiplicative constraint for solving inverse problems," IEEE Trans. on Image Processing, Vol. 10, No. 9, 1384-1392, 2001.
doi:10.1109/83.941862
2. Baussard, A., K. Belkebir, and D. Premel, "A markovian regularization approach of the modified gradient method for solving a two-dimensional inverse scattering problem," J. Electromag. Waves and Appl., Vol. 17, 989-1008, 2003.
doi:10.1163/156939303322519072
3. Belkebir, K., S. Bonnard, F. Pezin, P. Sabouroux, and M. Saillard, "Validation of 2D inverse scattering algorithms from multifrequency experimental data," J. Electromag. Waves and Appl., Vol. 14, 1637-1667, 2000.
4. Belkebir, K. and M. Saillard, "Special section: testing inversion algorithms against experimental data," Inverse Problems, Vol. 17, 1565-1571, 2001.
doi:10.1088/0266-5611/17/6/301
5. Blanc-Féraud, L., P. Charbonnier, G. Aubert, and M. Barlaud, "Nonlinear image processing: modeling and fast algorithm for regularization with edge detection," Proc. IEEE International Conference on Image Processing (Washington), 474-477, 1995.
doi:10.1109/ICIP.1995.529749
6. Charbonnier, P., L. Blanc-Feraud, G. Aubert, and M. Barlaud, "Deterministic edge-preserving regularization in computed imaging," IEEE Trans. on Image Processing, Vol. 6, No. 2, 298-311, 1997.
doi:10.1109/83.551699
7. Delaney, A. H. and Y. Bresler, "Globally convergent edgepreserving regularized reconstruction: an application to limited angle tomography," IEEE Trans. on Image Processing, Vol. 7, No. 2, 204-221, 1998.
doi:10.1109/83.660997
8. Dourthe, C., C. Pichot, J-Y Dauvignac, L. Blanc-Féraud, and M. Barlaud, "Regularized bi-conjugate gradient algorithm for tomographic reconstruction of buried objects," Special issue on problems on random scattering and electromagnetic wave sensing, Vol. E83-C, No. 12, 1858-1863, 2000.
9. Kleinman, R. E. and P. M. Van Den Berg, "A modified gradient method for two dimensional problems in tomography," J. Comput. Appl. Math., Vol. 42, 17-35, 1992.
doi:10.1016/0377-0427(92)90160-Y
10. Lambert, M., D. Lesselier, and B. J. Kooij, "The retrieval of a buried cylindrical obstacle by a constrained modified gradient method in the h-polarization case and for Maxwellian materials," Inverse Problems, Vol. 14, 1265-1283, 1998.
doi:10.1088/0266-5611/14/5/011
11. Lobel, P., L. Blanc-Feraud, C. Pichot, and M. Barlaud, "A new regularization scheme for inverse scattering," Inverse Problems, Vol. 13, 403-410, 1997.
doi:10.1088/0266-5611/13/2/013
12. Press, W. H., B. P. Flannery, S. A. Teukolski, and W. T. Vetterling, Numerical Recipes. The Art of Scientific Computation Cambridge University Press, Cambridge, 1986., 1986.
13. Van Den Berg, P. M. and R. E. Kleinman, "A total variation enhanced modified gradient algorithm for profile reconstruction," Inverse Problems, Vol. 11, 5, 1995.
doi:10.1088/0266-5611/11/3/002