Vol. 52
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-12-13
Surface Integral Equation Method for General Composite Metallic and Dielectric Structures with Junctions
By
Progress In Electromagnetics Research, Vol. 52, 81-108, 2005
Abstract
The surface integral equation method is applied for the electromagnetic analysis of general metallic and dielectric structures of arbitrary shape. The method is based on the EFIE-CFIE-PMCHWT integral equation formulation with Galerkins type discretization. The numerical implementation is divided into three independent steps: First, the electric and magnetic field integral equations are presented and discretized individually in each non-metallic subdomain with the RWG basis and testing functions. Next the linearly dependent and zero unknowns are removed from the discretized system by enforcing the electromagnetic boundary conditions on interfaces and at junctions. Finally, the extra equations are removed by applying the wanted integral equation formulation, and the reduced system is solved. The division into these three steps has two advantages. Firstly, it greatly simplifies the treatment of composite ob jects with multiple metallic and dielectric regions and junctions since the boundary conditions are separated from the discretization and integral equation formulation. In particular, no special junction basis functions or special testing procedures at junctions are needed. Secondly, the separation of the integral equation formulation from the two previous steps makes it easy to modify the procedure for other formulations. The method is validated by numerical examples.
Citation
Pasi Yla-Oijala, Matti Taskinen, and Jukka Sarvas, "Surface Integral Equation Method for General Composite Metallic and Dielectric Structures with Junctions," Progress In Electromagnetics Research, Vol. 52, 81-108, 2005.
doi:10.2528/PIER04071301
References

1. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.

2. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Electromagnetic scattering from axially inhomogeneous bodies of revolution," IEEE Trans. on Antennas and Propagation, Vol. 32, No. 8, 797-806, 1984.
doi:10.1109/TAP.1984.1143430

3. Govind, S., D. R. Wilton, and A. W. Glisson, "Scattering from inhomogeneous penetrable bodies of revolution," IEEE Trans. on Antennas and Propagation, Vol. 32, No. 11, 1163-1173, 1984.
doi:10.1109/TAP.1984.1143240

4. Huddleston, P. L., L. N. Medgyesi-Mitschang, and J. M. Putnam, "Combined field integral equation formulation for scattering by dielectrically coated conducting bodies," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 4, 510-520, 1986.
doi:10.1109/TAP.1986.1143846

5. Putnam, J. M. and L. N. Medgyesi-Mitschang, "Combined field integral equation for inhomogeneous two-and three-dimensional bodies: The junction problem," IEEE Trans. Antennas and Propagation, Vol. 39, No. 5, 667-672, 1991.
doi:10.1109/8.81498

6. Goggans, P. M., A. A. Kishk, and A. W. Glisson, "Electromagnetic scattering from ob jects composed of multiple homogeneous regions using a region-by-region solution," IEEE Trans. Antennas and Propagation, Vol. 42, No. 6, 865-871, 1994.
doi:10.1109/8.301713

7. Ylä-Oijala, P. and E. Somersalo, "Computation of electromagnetic fields in axisymmetric RF structures with boundary integral equations," Journal of Electromagnetic Waves and Applications, Vol. 13, 445-489, 1999.

8. Sarkar, T. K., S. M. Rao, and A. R. Djordjevic, "Electromagnetic scattering and radiation from finite microstrip structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 38, No. 11, 1568-1575, 1990.
doi:10.1109/22.60001

9. Rao, S. M., C. C. Cha, R. L. Cravey, and D. Wilkes, "Electromagnetic scattering from arbitrary shaped conducting bodies coated with lossy materials of arbitrary thickness," IEEE Trans. on Antennas and Propagation, Vol. 39, No. 5, 627-631, 1991.
doi:10.1109/8.81490

10. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1383-1398, 1994.

11. Chen, Q. and D. R. Wilton, "Electromagnetic scattering by three-dimensional arbitrary complex material/conducting bodies," IEEE AP-S Symposium 1990, Vol. 2, 590-593, 1990.

12. Arvas, E., A. Rahhal-Arabi, A. Sadigh, and S. M. Rao, "Scattering from multiple conducting and dielectric bodies of arbitrary shape," IEEE Antennas and Propagation Magazine, Vol. 33, No. 2, 29-36, 1991.
doi:10.1109/74.88184

13. Shin, J., A. W. Glisson, and A. A. Kishk, "Analysis of combined conducting and dielectric structures of arbitrary shapes using an E-PMCHW integral equation formulation," IEEE AP-S Symposium 2000, Vol. 4, 2282-2285, 2000.

14. Donepudi, K. C., J.-M. Jin, and W. C. Chew, "A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies," IEEE Trans. Antennas and Propagation, Vol. 51, No. 10, 2814-2821, 2003.
doi:10.1109/TAP.2003.817979

15. Kolundzija, B. M., "Electromagnetic modelling of composite metallic and dielectric structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 47, No. 7, 1021-1032, 1999.
doi:10.1109/22.775434

16. Shin, J., A. W. Glisson, and A. A. Kishk, "Modeling of general surface junctions of composite objects in an SIE/MoM formulation," 2000 ACES Conference Proceedings, 683-690, 2000.

17. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

18. Carr, M., E. Topsakal, and J. L. Volakis, "A procedure for modeling material junctions in 3-D surface integral equation approaches," IEEE Trans. on Antennas and Propagation, Vol. 52, No. 5, 1374-1379, 2004.
doi:10.1109/TAP.2004.827247

19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagation, Vol. AP-30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

20. Mautz, J. R. and R. F. Harrington, "Electromagnetic scattering from a homogeneous material body of revolution," Arch. Elektron. Übertragungstechn. (Electron. Commun.), Vol. 33, 71-80, 1979.

21. Mautz, J. R. and R. F. Harrington, "H-field, E-field and combined-field solutions for conducting bodies of revolution," Arch. Elektron. Übertragungstechn. (Electron. Commun.), Vol. 32, 157-164, 1978.

22. Kress, R., Linear Integral Equations, Springer-Verlag, 1989.

23. Colton, D. and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley & Sons, 1983.

24. Ylä-Oijala, P. and M. Taskinen, "Calculation of CFIE impedance matrix elements with RWG and n × RWG functions," IEEE Trans. Antennas and Propagation, Vol. 51, No. 8, 1837-1846, 2003.
doi:10.1109/TAP.2003.814745

25. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagnetics, Vol. 10, 407-421, 1990.

26. Umashankar, K., A. Taflove, and S. A. Rao, "Electromagnetic scattering by arbitrary shaped three-dimensional homogeneous lossy dielectric objects," IEEE Trans. Antennas and Propagation, Vol. AP-34, No. 6, 758-766, 1986.
doi:10.1109/TAP.1986.1143894

27. Pang, Y.-H. and R-B. Wu, "Analysis of microstrip antennas with finite-sized substrate," IEEE APS Symposium, Vol. 2, 814-817, 2001.

28. Chen, W., K.-F. Lee, and R. Q. Lee, "Input impedance of coaxially fed rectangular microstrip antenna on electrically thick substrate," Microwave and Optical Technology Letters, Vol. 6, No. 6, 387-390, 1993.

29. Ylä-Oijala, P., M. Taskinen, and J. Sarvas, "Multilayered media Green's functions for MPIE with general electric and magnetic sources by the Hertz potential approach," Progress in Electromagnetic Research, Vol. 33, 141-165, 2001.

30. Ylä-Oijala, P. and M. Taskinen, "Efficient formulation of closed form Green's functions for general electric and magnetic sources in multilayered media," IEEE Trans. Antennas and Propagation, Vol. 51, No. 8, 2106-2115, 2003.
doi:10.1109/TAP.2003.814738

31. Junker, G. P., A. A. Kishk, and A. W. Glisson, "Input impedance of dielectric resonator antennas excited by a coaxial probe," IEEE Trans. on Antennas and Propagation, Vol. 42, No. 7, 960-966, 1994.
doi:10.1109/8.299598