Vol. 52
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-12-13
Analysis of the Temperature Increase Linked to the Power Induced by RF Source
By
Progress In Electromagnetics Research, Vol. 52, 23-46, 2005
Abstract
Temperature increase analysis has been performed with consideration to the anatomical model of the human head exposed to a cellular phone operating at 900 MHz. Four different numerical methods, in particular an implicit method based on the Alternating Direction Implicit technique (ADI), were applied to solve the Bio-Heat Equation (BHE), their advantages and limitations were compared using a canonical case. The tests performed on the latest have shown that the implicit approach is well adapted to solve this type of equations. The rise of temperature in the human head exposed to the RF emission of a mobile phone with a radiated power of 250 mW at 900 MHz was analyzed. In addition the influence of the presence of the telephone kit close to the head was discussed. The influence of different thermal parameters such as the thermal conductivity and the blood perfusion coefficient on the rise of temperature has been analyzed. The simulation carried out showed that the maximum temperature increase in the internal tissues linked to SAR deposition does not exceed 0.1ºC. We recorded a temperature difference of 1.6ºC in the skin due to the presence of a switched off cellular phone, which has been confirmed by the experimental measurements performed.
Citation
Ahmed Ibrahiem, Christian Dale, Walid Tabbara, and Joe Wiart, "Analysis of the Temperature Increase Linked to the Power Induced by RF Source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501
References

1. ICNIRP Guidelines, ``Guidelines for limiting exposure to time-varying electric[#COMMA] magnetic[#COMMA], "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, No. 4, 494-522, 1998.

2. IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, 3 kHz to 300 GHz, 1-1991, IEEE standard C95.1-1991, 1992.

3. Gandhi, O. P., Q.-X. Li, and G. Kang, "Temperature rise for the human head for cellular telephones and for peak SARs prescribed in safety guidelines," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 9, 2001.

4. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "SAR distribution and temperature increase in an anatomical model of the human eye exposed to the field radiated by the user antenna in a wireless LAN," IEEE Trans. Microwave Theory Tech., Vol. 46, No. 12, 1998.

5. Wiart, J. and R. Mittra, "Calculation of the power absorbed by tissues in case of hand set mobile antenna close to biological tissue," Proc. IEEE Symp. Antennas Propagat., No. 7, 1104-1107, 1996.

6. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Power absorption and temperature elevations induced in the human head by a dual-band monopole-helix antenna phone," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 12, 2001.

7. Hirata, A., M. Morita, and T. Shiozawa, "Temperature increase in the human head due to a dipole antenna at microwave frequencies," IEEE Trans. EMC, Vol. 45, No. 1, 2003.

8. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specific absorption rate and temperature increases in the head of a cellular-phone user," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 7, 2000.

9. Taflove, A., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 1995.

10. Euvrard, D., "Résolution numérique des équations aux dérivées partiaelles," collection Masson, 58-61, 1994.

11. Brian, P. L. T., "A finite-difference method of high-order accuracy for the solution of three-dimensional transient heat conduction problem," Amer. Inst. Chem. Eng. J., Vol. 7, No. 3, 367-370, 1961.

12. Van Leeuwen, G. M. J., J. J. W. Lagendijk, B. J. A. M. Van Leersum, A. P. M. Zwamborm, S. N. Hornsleth, and A. N. T. J. Kotte, "Calculation of change in brain temperatures due to exposure to a mobile phone," Phys. Med. Bio., Vol. 44, 0031-9155, 1999.
doi:10.1088/0031-9155/44/3/006

13. CENELEC, European standard EN 50360 & EN 50361., European standard EN 50360 & EN 50361. , 5036.

14. Bronzino, J. D., Biomedical Engineering Handbook, Vol. 1, Vol. 1, 1999.

15. Gabriel, C., "Compilation of the dielectric properties of body tissues at RF and microwave frequencies," Occupational and Environmental Health Directorate, 1996-0037, 1996.

16. Ozisik, M. N., Finite Difference Methods in Heat Transfer, 1994., 1994.

17. Chebolu, S. R. S., "Efficient modeling of passive electronic devices using the finite difference time domain method," Thesis, 1996.

18. Chatterjee, I. and O. P. Gandhi, "An inhomogeneous thermal block model of man for the electromagnetic environment," IEEE Trans. Biomed. Eng., Vol. BME-30, No. 11, 1983.

19. Wang, J. and O. Fujiwara, "FDTD computation of temperature rise in the human head for portable telephone," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 8, 1999.

20. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C, Cambridge University, 1988.

21. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693

22. Burkhardt, M., K. Pokovic, M. Gnos, T. Schmid, and N. Kuster, "Numerical and experimental dosimetry of Petri dish exposure setups," Journal of Bioelectromagnetics Society, Vol. 17, 483-493, 1996.
doi:10.1002/(SICI)1521-186X(1996)17:6<483::AID-BEM8>3.0.CO;2-#

23. Laval, L., Ph. Leveque, and B. Jecko, "A new in vitro exposure device for the mobile frequency of 900 MHz," Journal of Bioelectromagnetics Society, Vol. 21, 255-263, 2000.
doi:10.1002/(SICI)1521-186X(200005)21:4<255::AID-BEM2>3.0.CO;2-4

24. Watanabe, S., M. Taki, and O. Fujiwara, "Characteristics of the SAR distribution in a head exposed to electromagnetic fields radiated by a hand-held portable radio," IEEE Trans. Microwave Theory Tech., Vol. 44, 1874-1883, 1996.
doi:10.1109/22.539946

25. Gedney, S. D., "An anisotropy perfectly matched layer absorbing media for the truncation of FDTD lattices," IEEE Trans. Antennas and Propagation, Vol. 44, 1630-1639, 1996.
doi:10.1109/8.546249

26. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Computational Physics, Vol. 114, No. 2, 195-200, 1994.
doi:10.1006/jcph.1994.1159

27. Wang, T.-Y. and C. C.-P. Chen, "3-D thermal-ADI: A linear-time chip level transient thermal simulator," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, No. 12, 1434-1445, 2002.
doi:10.1109/TCAD.2002.804385

28. Bernardi, P., M. Cavagnaro, S. Pisa, and E. Piuzzi, "Specificabsorptionrateandtemperatureelevationinasubjectexposedinthefarfieldofradio-frequencysourceoperatinginthe10-900MHzrange," IEEE Trans. On Biomedical Eng., Vol. 50, No. 3, 10-900, 2003.