Vol. 49
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-09-14
Parabolic Equation Solution of Tropospheric Wave Propagation Using FEM
By
, Vol. 49, 257-271, 2004
Abstract
Abstract-In this work,the parabolic equation applied on radiowave and microwave tropospheric propagation, properly manipulated, and resulting in a one-dimensional form, is solved using the Finite Element Method (FEM). The necessary vertical tropospheric profile characteristics are assigned to each mesh element, while the solution advances in small and constant range segments, each excited by the solution of the previous step. This is leading to a marching algorithm, similar to the widely used Split Step formulation. The surface boundary conditions including the wave polarization and surface conductivity properties are directly applied to the FEM system of equations. Since the FEM system returns the total solution, a technique for the separation of the transmitted and reflected waves is also presented. This method is based on the application of the Discrete Fourier Transform (DFT) in the space domain, which allows for the separation of the existing wave components. Finally, abnormal tropospheric condition propagation is being employed to assess the method, while the results are compared to those obtained using the Advance Refractive Prediction System (AREPS v.3.03) software package.
Citation
Stergios Isaakidis, and Thomas Xenos, "Parabolic Equation Solution of Tropospheric Wave Propagation Using FEM," , Vol. 49, 257-271, 2004.
doi:10.2528/PIER04042701
References

1. Hitney, H. V., "Refractive effects from VHF to EHF. Part A: Propagation mechanisms," AGARD-LS-196, 1-4, 1994.

2. Patterson, W. L., C. P. Hattan, G. E. Lindem, R. A. Paulus, H. V. Hitney, K. D. Anderson, and A. E. Barrios, "Engineer's refractive effects prediction systems (EREPS) version 3.0," NRaD Technical Document 2648, 1994.

3. Lear, M. W., "Computing atmospheric scale height for refraction corrections," NASA Mission Planning and Analysis Division, 1980.

4. Slingsby, P . L., "Modeling tropospheric ducting effects on VHF/UHF propagation," IEEE Transactions on Broadcasting, Vol. 37, No. 2, 25-34, 1991.
doi:10.1109/11.86959

5. Baumgartner, G. B.H. V. Hitney, and R. A. Pappert, "Duct propagation modeling for the integrated-refractive-effects prediction program (IREPS)," IEE Proc. F, Vol. 130, No. 7, 630-642, 1983.

6. Baumgartner, G. B., "XWV G: A waveguide program for trilinear tropospheric ducts," Tech. Doc. 610, 1983.

7. Shellman, C. H., "A new version of MODESRCH using interpolated values of the magnetoionic reflection coefficients," Interim technical report NOSC/TR-1143, 1986.

8. Flock, W. L., "Propagation effects on satellite systems at frequencies below 10 GHz," A Handbook for Satellite System Design, 1987.

9. ITU-R, ``The radio refractive index: its formula, "The radio refractive index: its formula and refractivity data," International Telecommunication Union, 453-459, 2003.

10. Craig, K. H., "Propagation modeling in the troposphere: Parabolic equation method," IEEE Electronics Letters, Vol. 24, No. 18, 1136-1139, 1988.

11. Dockery, G. D., "Modeling electromagnetic wave propagation in the troposphere using the parabolic equation," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1464-1470, 1988.
doi:10.1109/8.8634

12. Barrios, A. E., "Parabolic equation modeling in horizontally inhomogeneous environments," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 7, 791-797, 1992.
doi:10.1109/8.155744

13. Barrios, A. E., "A terrain parabolic equation model for propagation in the troposphere," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 1, 90-98, 1994.
doi:10.1109/8.272306

14. Craig, K. H. and M. F. Levy, "Parabolic equation modelling of the effects of multipath and ducting on radar systems," IEEE Proc. F, Vol. 138, No. 2, 153-162, 1991.

15. Sevgi, L. and S. Paker, "Surface wave path loss calculations in HF propagation with split-step parabolic equation," Progress In Electromagnetic Research Symposium, 1996.

16. Levy, M. F., "Parabolic equation modeling of propagation over irregular terrain," IEEE Electronics Letters, Vol. 26, No. 14, 1153-1155, 1990.

17. Levy, M. F., "Horizontal parabolic equation solution of radiowave propagation problems on large domains," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 2, 137-144, 1995.
doi:10.1109/8.366375

18. Akleman, F. and L. Sevgi, "A novel finite-difference timedomain wave propagator," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 3, 839-843, 2000.
doi:10.1109/8.855505

19. Akleman, F. and L. Sevgi, "Realistic surface modeling for a finitedifference time-domain wave propagator," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1675-1679, 2003.
doi:10.1109/TAP.2003.813618

20. Ko, H. W., J. W. Sari, M. E. Thomas, and P. J. Herchenroeder, "Anomalous propagation and radar coverage," AGARD Conf. Proc, Vol. 346, 1-14, A GARD-CP-346, 1984.

21. Salonen, K., "Observation operator for Doppler radar radial winds in HIRLAM 3D-Var," Proceedings of ERAD (2002), 405-408, 2002.

22. Jin, J., The Finite Element Method in Electromagnetics, John Wiley & Sons, 1993.

23. Isaakidis, S. A. and Th. D. Xenos, "Wave propagation and reflection in the ionosphere. An alternative approach for ray path calculations," Progress In Electromagnetic Research, Vol. 45, 201-215, 2004.
doi:10.2528/PIER03071802

24. Hitney, H. V., "Hybrid ray optics and parabolic equation methods for radar propagation modeling," IEE International Conference 365, 58-61, 1992.

25. Patterson, W. L. and H. V. Hitney, "Radio physical optics CSCI software documents," NCCOSC RDTE DIV Technical Document 2403, 1992.

26. Patterson, W. L. and H. V. Hitney, "Radio physical optics (RPO) CSCI software documents,RPO Version 1.16," NCCOSC RDTE DIV Technical Document 2403, 1992.