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Abstract—In this work, the parabolic equation applied on radiowave
and microwave tropospheric propagation, properly manipulated, and
resulting in a one-dimensional form, is solved using the Finite
Element Method (FEM). The necessary vertical tropospheric profile
characteristics are assigned to each mesh element, while the solution
advances in small and constant range segments, each excited by
the solution of the previous step. This is leading to a marching
algorithm, similar to the widely used Split Step formulation. The
surface boundary conditions including the wave polarization and
surface conductivity properties are directly applied to the FEM system
of equations. Since the FEM system returns the total solution, a
technique for the separation of the transmitted and reflected waves
is also presented. This method is based on the application of the
Discrete Fourier Transform (DFT) in the space domain, which allows
for the separation of the existing wave components. Finally, abnormal
tropospheric condition propagation is being employed to assess the
method, while the results are compared to those obtained using
the Advance Refractive Prediction System (AREPS v.3.03) software
package.
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1. INTRODUCTION

Since the tropospheric refractive index is frequency independent, the
lower parts of the atmosphere affect the radiowave propagation in
a wide frequency range, from VHF to optical frequencies, whereas,
abnormal environmental conditions can end up to ducting phenomena.
These result to the trapping of the UHF radio waves and contribute
to the over-the-horizon propagation. The modeling of radio wave
propagation through the troposphere has been extensively studied, and
nowadays a great number of reliable models are in use.

In the past, emphasis was given to geometrical optics techniques.
These methods [1—3] provide a general geometrical description of
ray families, propagating through the troposphere. They are based
on the discrimination of the medium into sufficiently small segments,
with a linearly varying modified refractivity index. In each segment,
the radiowave propagating angle is calculated using either the Snell’s
law or its generalized form, if the Earth’s curvature is considered.
These methods have main advantages, since their implementation is
very simple and the necessary CPU time is very small. On the other
hand, ray tracing methods present many disadvantages; for example
the radiowave frequency is not accounted for and it is not always clear
whether the ray is trapped by the specific duct structure [4].

An alternative approach for tropospheric propagation modeling
was developed by Baumgartner [5] and was extended and improved
by Baumgartner [6] and Shellman [7]. This method, usually known
as Waveguide Model or Coupled Mode Technique, is based on a root
finding algorithm by tracing the curve defined by

G = |R(O)R,(9)| = 1 (1)
where

R is a complex reflection coefficient over the height hg,
R, is the corresponding coefficient below the height A,
ho is a reference height.

This is used to determine the eigenangles 6,,, that have a practical
meaning in tropospheric propagation. These are inserted in a height-
gain differential equation calculating the propagation factor. The main
disadvantages of coupled mode techniques lie in the complexity of
the root finding algorithms and the large computational demands,
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especially when higher frequencies and complicated ducting profiles
are involved.

One of the most reliable and widely used techniques is the
Parabolic Equation (PE) Method, initially developed for the study of
underwater acoustics problems and later on extended to tropospheric
propagation ones. The PE is based on the solution of the two-
dimensional differential parabolic equation, fitted by homogeneous or
inhomogeneous refractivity profiles. The calculations take into account
the radius of the Earth and terrain effects whereas the polarization of
the propagating radiowaves is implemented on the surface boundary
conditions. The direct global solution of the PE, by means of a
numerical method e.g., Finite-Difference Time-Domain (FDTD) or
FEM, results to a complex system of equations, the solution of which
requires high computational power and large RAM.

In this work, the parabolic equation is properly manipulated to
a one-dimensional form, the solution of which is achieved using the
Finite Element Method (FEM). The solution advances in space using
small range steps. The total field is determined in a two-dimensional
tropospheric medium, since azimuth symmetry is assumed. Finally,
radar application examples are presented, demonstrating the radio
wave propagation under surface ducting conditions, while the method
is evaluated through a comparison to the corresponding results from
the AREPS package, under the same propagation conditions.

2. TROPOSPHERIC DUCTS

The index of refraction is defined as

n=./e, = c/v (2)
where

Er is the dielectric constant of the troposphere,
¢ is the speed of light and
v is the phase velocity of the electromagnetic
wave in the medium.

Since n near the earth’s surface is slightly greater than unity (1.00025—
1.00040), it seems more practical to use the scaled index of refraction
N, which is called refractivity and is defined as [8]:

T7.6p 5.6 , 375 10%¢

N=(mn-1)-10°= - T 72 3)
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where

P is the total pressure in mbar,
e is the water vapor pressure and
T  is the temperature in “Kelvin.

In order to examine the N gradients, the modified refractivity index is
used. It is defined as [9]:

h
M—(n—1+—>-106—]\7+0.157h (4)
a

The computation of the refractive conditions, characterized as
Subrefraction, Standard, Surerrefraction and Trapping is achieved by
its gradient dM/dh. Tropospheric ducting phenomena occur when
either:

dM

or

dN/dh < —157 (5b)

is met.

The tropospheric ducting effects to radio wave propagation, are
similar to that of the metal waveguides; therefore, only modes with
a wavelength shorter than the cut-off wavelength can propagate
(the cut-off frequency being a function of the duct’s width). In
transmitter/receiver systems, the height of the antennas, together with
the vertical refractivity profile, can lead to a variety of phenomena.
Usually, the radio waves are trapped inside the duct, leading to an over-
the-horizon propagation. On the other hand, a radar with the antenna
positioned below the ducting layer can miss a target flying inside or
above the duct. If both receiving and transmitting antennas are located
inside the duct, the field in the receiver is stronger, compared to the
field received in the absence of the waveguide.

3. PARABOLIC EQUATION

Various methods for the solution of the PE were developed and
presented to the day. The most efficient algorithm seems to be the
Split Step Solution which employs the Fast Fourier Transform (FFT)
to advance the solution over small range steps. The algorithm has
been widely used in many applications [10,11,4]. More specifically,
Barrios [12, 13] treated horizontally inhomogeneous environments and
a terrain model respectively. Craig and Levy [14] applied the Split
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Step Solution to assess radar performance under multipath and ducting
conditions. Finally, Sevgi and Paker [15] discussed the path loss in HF
propagation channels. Alternative algorithms for the solution of the
PE were also proposed. For example, Levy [16] presented a Finite-
Difference formulation, whereas she has also applied [17], the horizontal
PE solution above a specific height level. Finally, Akleman and Sevgi
[18], applied a Finite-Difference Time-Domain (FDTD), and extended
its algorithm [19] in order to deal with varying terrain models.

The analysis to follow starts from a Parabolic Equation form
taking into account the Earth flattening transformations [4, 20]:

0?u(z, z)
022

ou(z, z)

27k
te ox

+ k2 <n2—1—|—2—;)u(w,z)20 (6)

Where k = 27/ is the free space wave-number,

x  is the horizontal propagation distance (range),
z is the heightand
R is the Earth’s radius (6378165 m).

Assuming that the field slowly varies in the z direction, the partial
derivative du(z, z)/0x, can be analyzed to its partial variations. Thus,
for a sufficiently small range step dz, Equation (6) can be written as:

0?u(x, 2) u(z, z) —u(x — dx, 2) o ( 9 2z B
T+2ﬂk S +k (n —1+R>u(az,z)—0
(7)
or
Ou(z,2) 25k o o 2z 25k
7%— {% +k <n -1+ E)] u(z,z) = gu(x—&:,z) (8)

Assuming z = dz, the quantity u(z — dx, z) = u(0, z) corresponds to
the initial field. Equation (8) is a recursive, one-dimensional form of
the parabolic equation. For each range step , it can be directly solved
using FEM and the resulting solution is introduced as an excitation
to the equation of the next step. The refractive index, n, is directly
assigned to each line element of the FEM mesh and thus, any complex
or fast varying medium profile can be modeled.

It is obvious that for the first range step, the initial field (0, z)
is required. It can be any function of z, numerical or analytical,
depending on the specific problem demands. Thus, the starting field
can simulate the far field of any antenna. In the applications presented
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here, a Gaussian shaped field is used, representing the main lobe of a
radar system and it is expressed by the Gaussian relation [21]:

o Ho)2
W(z) = Aexp (—%) )

W(z) is the magnitude of the field in respect to height,
Hy is the altitude of the radar antenna,

A is the maximum intensity of W at height Hy and

ky is a coefficient which determines the beam width.

4. BOUNDARY CONDITIONS

The solution of equation (8) using FEM, requires the application of
boundary conditions at the starting height, z = zuyin, which in fact is
the Earth’s surface, and at the maximum altitude considered, z = zpax.
At the upper artificial boundary, an absorbing condition has to be
applied, allowing for the propagation of the waves and at the same time,
reducing any possible reflections introduced by the method. Therefore,
a first or second order absorbing boundary condition is applied [22],
combined with the zp.x extension. Alternatively, the non-desirable
upper boundary reflections can be eliminated by applying a fictitious
absorber or a Perfectly Matched Layers (PML) scheme.

The entrance boundary conditions are expressed by the equation:

ou
9L ik - 1
{82 j qu] 0 (10)

Z=Zmax

Where ¢ is given by:

1

g=q= | —"—"-— (11)
jo

<67~ + —)

€0

jo
Er + —wa
0
- -7 12
Ko ( )

for vertical and horizontal polarization respectively. In the equations
(11) and (12), &,, p, are the relative permittivity and permeability

or:

q=4H =
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of the medium (surface) respectively, £o, po, the permittivity and
permeability of the free space, and o is the absolute ground
conductivity. For a perfectly conducting surface, equations (11) and
(12) are reduced to OJu(z,0)/0z = 0 for vertical polarization and
u(z,0) = 0 for horizontal polarization, whereas for an imperfectly
conducting ground surface, the above equations can be applied using
for example [17] e, = 15 and o = 0.01 S/m.

5. WAVE SEPARATION

The solution of equation (8) using the marching algorithm discussed in
the previous sections, gives the total field u, which is the combination
of the upwards and downwards propagating coefficients. The wave
separation methodology, initially introduced for the discrimination of
radio waves after their reflection from the ionosphere [23] is based in
the application of the Discrete Fourier Transform (DFT) in the space
domain. In figure 1a, the coverage contour plot, representing the total
field of a wide vertically polarized radar beam (Ky = 11000) under a
surface duct, is shown. The carrier frequency is 1 GHz and the ground
surface is taken as perfectly conducting. The upper artificial boundary
condition was set to be non-perfectly absorbing. Thus, the reflections
occurring at 300m are due to the surface duct, while the reflections
arising at the upper boundary located at 1000 m, are due to the upper
boundary conditions.

Since the global solution is calculated using a marching range
scheme, the Fourier components amplitude versus the normalized
space-frequency (m~1) is plotted, applying the DFT at the height
solution of each range step (Fig. 1(b)). In this figure, the
lower components represent the up-going traveling waves, while the
higher components represent the descending waves. Isolating these
components and applying the Inverse DFT, the up and down going
waves are separated (Figs. 1(c) and 1(d)). Of course, the algebraic
summation of these components will give the initial total field. The
above example corresponds to one of the worst cases, where both the
artificial boundary and the tropospheric duct reflect a portion of the
incident waves and it is used to demonstrate the separation method.
It is obvious that using a perfectly absorbing boundary condition or
a PML scheme, the reflections from the atmospheric ducts are clearly
determined. On the other hand, if standard atmospheric conditions
are assumed, any possible reflections are due to the upper artificial
boundary only, allowing for the evaluation and the design of improved
absorbing layers or conditions.
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Figure 1. Wave separation example.

6. RESULTS AND DISCUSSION

In order to demonstrate the results obtained using the FEM solution
of the PE, the method was applied to various frequencies and medium
profiles. A radar antenna located at a height of 150 m above the see
level was assumed in all the examples of this section,. The main lobe
beam was modeled according to equation (9), with Hy = 150 and
A = 1. Moreover, vertical polarization and a perfectly conducting
ground were assumed. The solution of the final system of the FEM
equations was obtained using the Bi-Conjugate Gradients stabilized
method for a faster convergence. Other solution methods can be
implemented as well, as for example the Bi-Conjugate Gradients and
the Conjugate Gradient Squared methods.

Figure 2 presents the coverage diagram of a narrow radar
beam (K; = 11) at 100 MHz, under various tropospheric conditions
for standard atmospheric conditions [9]. It can be seen that the
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Figure 2. Propagation at 100 MHz under various tropospheric
profiles.
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waves propagate undisturbed through the tropospheric medium. In
Figures 2(b) to 2(f), a bilinear surface ducting profile was included,
starting from the sea level to an altitude of 300m. Standard
atmospheric conditions over this altitude were also assumed, while the
waveguide intensity was set to increase by steps of —0.5 M-units/m
in each diagram. This example illustrates the trapping mechanism
and it is clear that as the ducting intensity increases, a greater
amount of the propagating energy is restricted inside the waveguide
region. Especially, in the extraordinary atmospheric profiles assumed
in Figures 2(e) and 2(f), the waves are almost completely trapped
between the see level and 300 m.

Figure 3 demonstrates a more realistic tropospheric propagation
example through a ducting medium profile, incorporating frequency
bands mainly used by terrestrial search radar systems. The waveguide
intensity was set to —1 M-units/m for the first 300 m, and standard
atmosphere above this altitude. Figures 3(a) and 3(b) show the
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Figure 3. Narrow and wide beam propagation at 1 and 3 GHz.



Parabolic equation solution 267

Al

1 = -
10 20 30 40 5 60 70 80 81 APM 10 20 30 40 0 60 70 80 80 APM
Range (Km) Range (Km)

®)

Height (m)

Figure 4. FEM and APM methods normalized differences (dB) at
100 and 200 MHz.

coverage contour diagrams (0.5dB levels), for a carrier frequency at
1 GHz. In these figures, the vertically polarized beam width factor is
taken to be ky = 11 (narrow beam) and kf = 11000 (wide beam)
respectively. Figures 3(c) and 3(d) demonstrate the propagation at
3 GHz, for the conditions applied in Figures 3(a) and 3(b). In these
figures, the trapping of the waves below 300m is obvious, especially
at the frequency of 1 GHz. Moreover, the troposphere shows a leaky
waveguide behavior since it does not trap the whole amount of the
propagating energy.

Even if the refractive index of the troposphere is frequency
independent, it can be seen that the coverage diagrams vary between
the 1 and 3 GHz, since the frequency is included in the main parabolic
equation (6) and (8), via the wave number k& = 27/A. This is an
advantage in respect to ray tracing techniques, where both frequencies
would result in the same coverage diagrams. It can also be seen
(Figures 3(b) and 3(d)) that since the wide beam radar antenna is
located inside the ducting region, the transmitted wave is divided into
two components; an up-going, which overcomes the trapping condition
and a descending, which undergoes ground reflections.

In order to validate the FEM solution of the PE, the results were
compared to those obtained by the AREPS. The AREPS program
computes and displays a number of tactical decision aids to assess
the influence of the atmosphere and terrain on the performaces of
electromagnetic (EM) systems. The internal propagation model used
by AREPS is the Advance Propagation Model (APM). This is a hybrid
model that consists of four sub-models: flat earth, ray optics, extended
optics, and split-step parabolic eqation (PE). APM effectively merges
the Radio Physical Optics (RPO) model [24, 25, 26] with the Terrain
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Parabolic Equation Model (TPEM) [13].

In figures 4(a) and 4(b), the normalized propagation factor
differences between the results obtained using the FEM and the APM
methods, are shown. The examples illustrate the propagation of a
horizontally polarized Gaussian beam (Beam Width = 4°) at 100
and 200 MHz respectively. In figure 4(a), a surface duct is assumed
(dM = -1 M-units/m), having its top at 300m above an imperfectly
conducting ground surface (¢, = 15,0 = 0.01S/m) and above this
altitude standard atmospheric conditions were applied. Similarly, in
figure 4(b) the propagation characteristics are the same, while the
duct’s top was extended to 1000 m above the surface and its strength is
lowered to 0.3 M-units/m. It can be seen that the differences between
the two methods are very small and in general they do not exceed 1 dB.
Moreover, the maximum deviations are located around the initial field
region and they are probably caused by small differences in the way
that the source antenna far-field is applied in FEM and APM methods.

7. CONCLUSIONS

In practice, the FEM formulation can easily process complex
refractivity profiles of any kind, either numerical or analytical.
Moreover, the refractive index being independent between consequent
range steps, gives the ability to include horizontally inhomogeneous
tropospheric profiles. In these cases, the method’s response can be
directly adjusted to the refractivity variations, by properly modifying
the size of the FEM elements and the range step.

The proposed technique for the separation of the incident and
reflected wave components provides a useful tool for many applications.
For example, this methodology can be used for the determination
of the reflection coefficients and their space distribution. Moreover,
it can be used for the of the upper absorbing boundary conditions
efficiency evaluation, since the unwanted scattered field components
can be calculated.
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