Vol. 49
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-09-14
Time Domain EFIE and MFIE Formulations for Analysis of Transient Electromagnetic Scattering from 3-d Dielectric Objects
By
Progress In Electromagnetics Research, Vol. 49, 113-142, 2004
Abstract
In this paper, we investigate various methods for solving a time-domain electric field integral equation (TD-EFIE) and a timedomain magnetic field integral equation (TD-MFIE) for analyzing the transient electromagnetic response from three-dimensional (3-D) dielectric bodies. The solution method in this paper is based on the method of moments (MoM) that involves separate spatial and temporal testing procedures. Triangular patch basis functions are used for spatial expansion and testing functions for arbitrarily shaped 3-D dielectric structures. The time-domain unknown coefficients of the equivalent electric and magnetic currents are approximated using a set of orthogonal basis functions that is derived from the Laguerre functions. These basis functions are also used as the temporal testing. Numerical results involving equivalent currents and far fields computed by the proposed TD-EFIE and TD-MFIE formulations are presented and compared.
Citation
Baek-Ho Jung, Tapan Kumar Sarkar, and Magdalena Salazar-Palma, "Time Domain EFIE and MFIE Formulations for Analysis of Transient Electromagnetic Scattering from 3-d Dielectric Objects," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
doi:10.2528/PIER04022304
References

1. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.

2. Mieras, H. and C. L. Bennet, "Space-time integral equation approach to dielectric targets," IEEE Trans. Antennas Propagat., Vol. 30, No. 1, 2-9, 1982.
doi:10.1109/TAP.1982.1142753

3. Vechinski, D. A., S. M. Rao, and T. K. Sarkar, "Transient scattering from three-dimensional arbitrary shaped dielectric bodies," J. Opt. Soc. Amer., Vol. 11, No. 4, 1458-1470, 1994.

4. Rynne, B. P., "Time domain scattering from dielectric bodies," Electromagn., Vol. 14, 181-193, 1994.

5. Marx, E., "Integral equation for scattering by a dielectric," IEEE Trans. Antennas Propagat., Vol. 32, No. 2, 166-172, 1984.
doi:10.1109/TAP.1984.1143285

6. Pocock, M. D., M. J. Bluck, and S. P. Walker, "Electromagnetic scattering from 3-D curved dielectric bodies using time domain integral equations," IEEE Trans. Antennas Propagat., Vol. 46, No. 8, 1212-1219, 1998.
doi:10.1109/8.718577

7. Sarkar, T. K., W. Lee, and S. M. Rao, "Analysis of transient scattering from composite arbitrarily shaped complex structures," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1625-1634, 2000.
doi:10.1109/8.899679

8. Jung, B. H. and T. K. Sarkar, "Time-domain electric-field integral equation with central finite difference," Microwave Opt. Technol. Lett., Vol. 31, No. 6, 429-435, 2001.
doi:10.1002/mop.10055

9. Gres, N. T., A. A. Ergin, E. Michielssen, and B. Shanker, "Volume-integral-equation based analysis of transient electromagnetic scattering from three-dimensional inhomogeneous dielectric objects," Radio Sci., Vol. 36, No. 3, 379-386, 2001.
doi:10.1029/2000RS002342

10. Rao, S. M. and T. K. Sarkar, "Implicit solution of time domain integral equations for arbitrarily shaped dielectric bodies," Microwave Opt. Technol. Lett., Vol. 21, No. 3, 201-205, 1999.
doi:10.1002/(SICI)1098-2760(19990505)21:3<201::AID-MOP13>3.0.CO;2-1

11. Chung, Y.-S., T. K. Sarkar, and B. H. Jung, "Solution of time domain electric field integral equation for arbitrarily shaped dielectric bodies using an unconditionally stable methodology," Radio Sci., Vol. 38, No. 3, 1-12, 2003.

12. Sarkar, T. K. and J. Koh, "Generation of a wide-band electromagnetic response through a Laguerre expansion using early-time and low-frequency data," IEEE Trans. Microwave TheoryT ech., Vol. 50, No. 5, 1408-1416, 2002.

13. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

14. Sarkar, T. K., S. M. Rao, and A. R. Djordjevic, "Electromagnetic scattering and radiation from finite microstrip structures," IEEE Trans. Microwave TheoryT ech., Vol. 38, No. 11, 1568-1575, 1990.
doi:10.1109/22.60001

15. Rao, S. M. and D. R. Wilton, "E-field, H-field, and combined field solution for arbitrarily shaped three-dimensional dielectric bodies," Electromagn., Vol. 10, 407-421, 1990.

16. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," J. of Electromagn. Waves and Applicat., Vol. 17, No. 5, 737-739, 2003.
doi:10.1163/156939303322226383

17. Rao, S. M., "Electromagnetic scattering and radiation of arbitrarily-shaped surfaces by triangular patch modeling," Ph.D. Dissertation, No. 8, 1980.

18. Wilton, D. R., S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M. Al-Bundak, and C. M. Butler, "Potential integrals for uniform and linear source distributions on polygonal and polyhedral domains," IEEE Trans. Antennas Propagat., Vol. 32, No. 3, 276-281, 1984.
doi:10.1109/TAP.1984.1143304

19. Graglia, R. D., "Static and dynamic potential integrals for linearly varying source distributions in two-and three-dimensional problems," IEEE Trans. Antennas Propagat., Vol. 35, No. 6, 662-669, 1987.
doi:10.1109/TAP.1987.1144160

20. Caorsi, S., D. Moreno, and F. Sidoti, "Theoretical and numerical treatment of surface integrals involving the free-space Green's function," IEEE Trans. Antennas Propagat., Vol. 41, No. 9, 1296-1301, 1993.
doi:10.1109/8.247757

21. Graglia, R. D., "On the numerical integration of the linear shape functions times the 3-D Green's function or its gradient on a plane triangle," IEEE Trans. Antennas Propagat., Vol. 41, No. 10, 1448-1455, 1993.
doi:10.1109/8.247786

22. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1499-1502, 1995.
doi:10.1109/8.475946

23. Hodges, R. E. and Y. Rahmat-Samii, "The evaluation of MFIE integrals with the use of vector triangle basis functions," Microwave Opt. Technol. Lett., Vol. 14, No. 1, 9-14, 1997.
doi:10.1002/(SICI)1098-2760(199701)14:1<9::AID-MOP4>3.0.CO;2-P

24. Poularikas, A. D., The Transforms and Applications Handbook IEEE Press, IEEE Press, 1996.

25. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "A survey of various frequency domain integral equations for the analysis of scattering from three-dimensional dielectric objects," J. of Electromagn. Waves and Applicat., Vol. 16, No. 10, 1419-1421, 2002.