Vol. 48
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-22
Bateman Conformal Transformations Within the Framework of the Bidirectional Spectral Representation
By
Progress In Electromagnetics Research, Vol. 48, 201-231, 2004
Abstract
Four-dimensional conformal transformations due originally to Bateman have been used in the past by Hillion as alternative approaches to focus wave mode solutions to the 3D scalar wave equation. More recently, more extended families of focus wave mode solutions to the 3D scalar wave equation have been derived by Borisov and Utkin, as well as Kiselev, based on Bateman transformations together with a dimension-reduction approach, whereby the wave function is separated incompletely into a product of two functions. One particular goal in this exposition is to comment on and extend the work of Borisov and Utkin and simplify and extend the method used by Kiselev. More generally, however, the aim is to show that an already existing method, known as the bidirectional spectral representation, when examined in conjunction with Bateman conformal transformations, encompasses the Borisov-Utkin-Kiselev theories as special cases and allows a systematic derivation of extended families of FWM-type localized waves beyond the ranges of their applicability.
Citation
Ioannis Besieris, Amr Shaarawi, and Ahmed Attiya, "Bateman Conformal Transformations Within the Framework of the Bidirectional Spectral Representation," Progress In Electromagnetics Research, Vol. 48, 201-231, 2004.
doi:10.2528/PIER04021101
References

1. Bateman, H., "The conformal transformations of space of four dimensions and their applications to geometrical optics," Proc. London Math. Soc., No. 7, 70-89, 1909.

2. Bateman, H., "The transformations of the electrodynamical equations," Proc. London Math. Soc., No. 8, 223-264, 1910.

3. Bateman, H., The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations, Dover, 1955.

4. Hillion, P., "Courant-Hilbert solutions of the wave equation," J. Math. Phys., No. 33, 2749-2753, 1992.
doi:10.1063/1.529595

5. Hillion, P., Acta Appl. Math., and No. 30, 34-45, No. 30, 34-45, 1993., 1993.

6. Ziolkowski, R. W., "Exact solutions of the wave equation with complex source locations," J. Math. Phys., No. 26, 861-863, 1985.
doi:10.1063/1.526579

7. Belanger, P. A., "Lorentz transformation of the particle-like solutions of the homogeneous wave equation," J. Opt. Soc. Am. A, No. 3, 1986.

8. Brittingham, J. N., "Focus wave modes in homogeneous maxwell equations: transverse electric mode," J. Appl. Phys., No. 54, 1179-1189, 1983.
doi:10.1063/1.332196

9. Ziolkowski, R. W., "Localized transmission of electromagnetic energy," Phys. Rev. A, No. 39, 2005-2033, 1989.
doi:10.1103/PhysRevA.39.2005

10. Besieris, I. M., A. M. Shaarawi, and R. W. Ziolkowski, "A bidirectional traveling plane wave representation of exact solutions of the scalar wave equation," J. Math. Phys., No. 30, 1254-1269, 1989.
doi:10.1063/1.528301

11. Courant, R. and D. Hilbert, Methods of Mathematical Physics, Vol. II, Vol. II, 1962.

12. Borisov, V. V. and A. B. Utkin, "Generalization of Brittingham's localized solutions to the wave equation," Eur. Phys. J. B, Vol. 21, 477-480, 2001.
doi:10.1007/s100510170155

13. Kiselev, A., "Generalization of Bateman-Hillion progressive wave and Bessel-Gauss pulse solutions of the wave equation via a separation of variables," J. Phys. A: Math. Gen., Vol. 36, 345, 2003.
doi:10.1088/0305-4470/36/23/103

14. Smirnov, I. M., Dokl. Akad. Nauk SSSR, and No. 14, 13, No. 14, 1937., 1937.

15. Heyman "E. Pulsed beam propagation in an inhomogeneous medium," IEEE Trans. Antennas Propag., No. 42, 311-319, 1994.
doi:10.1109/8.280715

16. Borisov, V. V., "Invariance-profile wavefunctions and Brittingham's focus wave modes," Eur. Phys. J. B, No. 6, 163-165, 1998.
doi:10.1007/s100510050538

17. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, No. 4, 651-654, 1987.

18. Shaarawi, A. M, "Nondispersive wavepackets," Ph.D. thesis, 1989.

19. Overfelt, P., "Bessel-Gauss pulses," Phys. Rev. A, No. 44, 3941-3947, 1991.
doi:10.1103/PhysRevA.44.3941

20. Sedky, S. M., "Generation of localized waves using dynamic apertures," M.Sc. thesis, 1995.

21. Gori, F., G. Guattari, and C. Padovani, Opt. Commun., No. 64, 491-495, No. 64, 491-495, 1987., 1987.

22. Besieris, I. M. and A. M. Shaarawi, "Three classes of Courant- Hilbert progressive solutions to the scalar wave equation," J. Electromagn. Waves Appl., No. 16, 1047-1060, 2002.

23. Wunsche, A., "Generalized Gaussian beam solutions of paraxial optics and their connection to a hidden symmetry," J. Opt. Soc. Am. A, No. 6, 1320-1329, 1989.

24. Siegman, A. E., "Hermite-Gaussian functions of complex argument as optical eigenfunctions," J. Opt. Soc. Am., No. 63, 1093-1094, 1973.

25. Gradshtein, I. S. and I. M. Ryzhik, Table of Integrals, Series and Products, 1980.

26. Caron, C. F. R. and R. M. Potvliege, "Bessel-modulated Gaussian beams with quadratic radial dependence," Opt. Commun., No. 164, 83-93, 1999.
doi:10.1016/S0030-4018(99)00174-1

27. Besieris, I. M., A. M. Shaarawi, and L. P. Ligthart, "A note on dimension reduction and finite energy localized wave solutions to the Klein-Gordon and scalar equations. Part I. FWM-type," J. Electromag. Waves Appl., No. 14, 595-612, 2000.

28. Kiselev, A. P., "Relatively undistorted waves mew examples," J. Math. Sci., Vol. 117, 3945-3946, 2003.
doi:10.1023/A:1024666808547

29. Kiselev, A. P. and M. V. Perel, "Relatively distortion-free waves for the m-dimensional wave equation," Diff. Eqs., Vol. 38, 1128-1129, 2002.