Vol. 51
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-12-10
Macroscopic Performance Analysis of Metamaterials Synthesized from Micrsocopic 2-d Isotropic Cross Split-Ring Resonator Array
By
Progress In Electromagnetics Research, Vol. 51, 197-217, 2005
Abstract
Two-dimensional isotropic metamaterials fabricated from cross split-ring resonators (CSRRs) are characterized and their constitutive relation tensors are studied in this paper. The effective constitutive parameters of the metamaterials are determined utilizing the quasi-static Lorentz theory and numerical method (i.e., the method of moments for solving the electric field integral equation). The induced current distributions of a single CSRR at the resonant frequency are presented. Moreover, the dependence of the resonant frequency on the dimensions of a single CSRR and the space distances of the CSRR array is also discussed. Reflection and transmission coefficients of a metamaterial slab versus frequency are finally discussed.
Citation
Hai-Ying Yao, Joshua Le-Wei Li, Qun Wu, and Jin Au Kong, "Macroscopic Performance Analysis of Metamaterials Synthesized from Micrsocopic 2-d Isotropic Cross Split-Ring Resonator Array," Progress In Electromagnetics Research, Vol. 51, 197-217, 2005.
doi:10.2528/PIER04020301
References

1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekhi, Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

2. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic meso structures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phe- nomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, No. 18, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Li, L.-W.H.-X. Zhang, and Z.-N. Chen, "Representation of constitutive relation tensors of metamaterials: An approximation for ffb media," Progress In Electromagnetics Research Symposium, 13-16, 2003.

7. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, No. 7, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405

8. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "T-junction waveguide experiment to characterize left-handed properties of metamaterials," Journal of Applied Physics, Vol. 94, No. 6, 3712-3716, 2003.
doi:10.1063/1.1603344

9. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas Propagation, Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622

10. Engheta, N., "Metamaterials with negative permittivity and permeability: background, salient features, and new trends," Microwave Symposium Digest, Vol. 1, 187-190, 2003.

11. Cubukcu, E., K. Aydin, and E. Ozbay, "Subwavelength resolution in a two-dimensional photonic-crystal-based superlens," Physical Review Letters, Vol. 91, No. 20, 207401, 2003.
doi:10.1103/PhysRevLett.91.207401

12. Shvets, G., "Photonic approach to making a material with a negative index of refraction," Physical Review B, Vol. 67, 035109, 2003.
doi:10.1103/PhysRevB.67.035109

13. Caloz, C., A. Sanada, and T. Itoh, "Microwave applications of transmission-line based negative refractive index structures," Asia-Pacific Microwave Conference Proceedings, No. 11, 2003.

14. Eleftheriades, G. V., A. K. Iyer, and P. C. Kremer, "Planar negative refractive index media using periodically l-c loaded transmission lines," IEEE Trans. Microwave Theory and Techniques, Vol. 50, No. 12, 2702-2712, 2002.
doi:10.1109/TMTT.2002.805197

15. Oliner, A. A., "A planar negative-refractive-index medium without resonant elements," Microwave Symposium Digest, Vol. 1, 191-194, 2003.

16. Shelby, R. A., D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, "Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial," Applied Physics Letters, Vol. 78, No. 4, 489-491, 2001.
doi:10.1063/1.1343489

17. Gay-Balmaz, P. and O. J. F. Martin, "Efficient isotropic magnetic resonators," Applied Physics Letters, Vol. 81, No. 5, 939-941, 2001.
doi:10.1063/1.1496507

18. Tretyakov, S. A., "Meta-materials with wideband negative permittivity and permeability," Microwave and Optical Technology Letters, Vol. 31, No. 9, 163-165, 2001.
doi:10.1002/mop.1387

19. Grbic, A. and G. V. Eleftheriades, "Periodic analysis of a 2-D negative refractive index transmission line structure," IEEE Trans. Antennas Propagation, Vol. 51, No. 10, 2604-2611, 2003.
doi:10.1109/TAP.2003.817543

20. Gay-Balmaz, P. and O. J. F. Martin, "Electromagnetic resonances in individual and coupled split-ring resonators," Journal of Applied Physics, Vol. 92, No. 5, 2929-2936, 2002.
doi:10.1063/1.1497452

21. Kong, J. A., "Theorems of bianisotropic media," Proceedings of the IEEE, Vol. 60, No. 9, 1036-1046, 1972.

22. Collin, R. E., Field Theory of Guided Waves, Chapter 12, 1991.

23. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Generalized constitutive relations for metamaterials based on the quasi-static lorentz theory," IEEE Trans. Antennas Propagation, Vol. 51, No. 10, 2550-2557, 2003.
doi:10.1109/TAP.2003.817565

24. Collin, R. E., Field Theory of Guided Waves, The 2nd edition, 1991.

25. Song, J. M. and W. C. Chew, "Moment method solutions using parametric geometry," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 1/2, 71-83, 1995.

26. Ishimaru, A., S.-W. Lee, Y. Kuga, and V. Jandhyala, "Computation of generalized constitutive relations for metamaterials," Proceeding of International Symposium on Antennas and Propagation, Vol. I-02, 177-180, 2002.

27. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress in Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.1159/000060803