Vol. 48
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2004-06-22
Electromagnetic Imaging for an Imperfectly Conducting Cylinder Buried in a Three-Layer Structure by the Genetic Algorithm
By
, Vol. 48, 27-44, 2004
Abstract
The imaging of an imperfectly conducting cylinder buried in a three-layer structure by the genetic algorithm is investigated. An imperfectly conducting cylinder of unknown shape and conductivity buriedin the secondla yer scatters the incident wave from the first layer or the thirdla yer. We measure the scatteredfieldin the first andthird layers. Based on the boundary condition and the recorded scattered field, a set of nonlinear integral equations is derived and the imaging problem is reformulatedin to an optimization problem. The genetic algorithm is then employedto findout the global extreme solution of the cost function. Numerical results demonstrated that, even when the initial guess is far away from the exact one, goodreconstruction can be obtained. In such a case, the gradient-based methods often get trapped in a local extreme. In addition, the effect of uniform noise on the reconstruction is investigated.
Citation
Yu-Shu Lee, Chien-Ching Chiu, and Yi-Shiuan Lin, "Electromagnetic Imaging for an Imperfectly Conducting Cylinder Buried in a Three-Layer Structure by the Genetic Algorithm," , Vol. 48, 27-44, 2004.
doi:10.2528/PIER03120304
References

1. Roger, A., "Newton-Kantorovitch algorithm appliedto an electromagnetic inverse problem," IEEE Trans. Antennas Propagat., Vol. AP-29, No. 3, 232-238, 1981.
doi:10.1109/TAP.1981.1142588

2. Tobocman, W., "Inverse acoustic wave scattering in two dimensions from impenetrable targets," Inverse Problems, Vol. 5, No. 12, 1131-1144, 1989.
doi:10.1088/0266-5611/5/6/018

3. Chiu, C. C. andY. W. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinders," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 9, 1632-1639, 1991.
doi:10.1109/22.83840

4. Colton, D. andP . Monk, "A novel methodfor solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II," SIAM J Appl. Math., Vol. 46, No. 6, 506-523, 1986.
doi:10.1137/0146034

5. Kirsch, A., R. Kress, P. Monk, and andA. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, Vol. 4, No. 8, 749-770, 1988.
doi:10.1088/0266-5611/4/3/013

6. Hettlich, F., "Two methods for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012

7. Kleiman, R. E. and P. M. van den Berg, "Two-dimensional location andshap e reconstruction," Radio Sci., Vol. 29, No. 7, 1157-1169, 1994.
doi:10.1029/93RS03445

8. Xiao, F. andH. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm coupled with deterministic method," IEICE Trans. Electron., Vol. E81-c, No. 12, 1784-1792, 1998.

9. Chiu, C. C. andW. T. Chen, "Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm," IEEE Trans. Microwave Theory and Tec., Vol. 48, No. 11, 1901-1905, 2000.
doi:10.1109/22.883869

10. Goldgerg, D. E., Genetic Algorithm in Search, Optimization and Machine Learning, 1989.

11. Rahmat-Samiia, Y. andE. Michielessen, Electromagnetic Optimization by Genetic Algorithms, Wiley Interscience, 1999.

12. Vavak, F. andT. C. Fogarty, "Comparison of steady state andgenerational genetic algorithms for use in nonstationary environments," Proceedings of IEEE International Conference on Evolutionary Computation, 192-195, 1996.

13. Johnson, J. M. andY. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Trans. Antennas Propagat., Vol. 39, No. 8, 7-21, 1997.

14. Tesche, F. M., "On the inclusion of loss in time domain solutions of electromagnetic interaction problems," IEEE Trans. Electromagn. Compat., Vol. 32, 1-4, 1990.
doi:10.1109/15.45244

15. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall, 1968.