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Abstract—The imaging of an imperfectly conducting cylinder buried
in a three-layer structure by the genetic algorithm is investigated. An
imperfectly conducting cylinder of unknown shape and conductivity
buried in the second layer scatters the incident wave from the first layer
or the third layer. We measure the scattered field in the first and third
layers. Based on the boundary condition and the recorded scattered
field, a set of nonlinear integral equations is derived and the imaging
problem is reformulated into an optimization problem. The genetic
algorithm is then employed to find out the global extreme solution of
the cost function. Numerical results demonstrated that, even when
the initial guess is far away from the exact one, good reconstruction
can be obtained. In such a case, the gradient-based methods often get
trapped in a local extreme. In addition, the effect of uniform noise on
the reconstruction is investigated.
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1. INTRODUCTION

The inverse scattering techniques for imaging the shape of imperfectly
conducting objects have attracted considerable attention in recent
years. They can apply in noninvasive measurement, medical imaging,
and biological application. In the past 20 years, many rigorous
methods have been developed to solve the exact equation. However,
inverse problems of this type are difficult to solve because they are
ill-posed and nonlinear. As a result, many inverse problems are
reformulated as optimization problems. General speaking, two main
kinds of approaches have been developed. The first is based on gradient
searching schemes such as the Newton-Kantorovitch method [1–3], the
Levenberg-Marguart algorithm [4–6] and the successive-overrelaxation
method [7]. These methods are highly dependent on the initial guess
and tend to get trapped in a local extreme. In contrast, the second
approach is based on the evolutionary searching schemes [8, 9]. They
tend to converge to the global extreme of the problem, no matter what
the initial estimate is [10, 11]. Owing to the difficulties in computing
the Green’s function by numerical method, the problem of inverse
scattering in a three-layer structure has seldom been attacked. In
our knowledge, there are still no numerical results by the genetic
algorithm for imperfectly conducting scatterers buried in a three-layer
structure. In this paper, the electromagnetic imaging of an imperfectly
conducting cylinder buried in a three-layer structure is investigated.
The steady state genetic algorithm is used to recover the shape and
the conductivity of the scatterer. It is found the steady-state genetic
algorithm [12, 13] can reduce the calculation time of the image problem
compared with the generational genetic algorithm. In Section 2, the
theoretical formulation for the electromagnetic imaging is presented.
The general principle of the genetic algorithm and the way we applied
them to the imaging problem are described. Numerical results for
various objects of different shapes are given in Section 3. Section 4 is
the conclusion.

2. THEORETICAL FORMULATION

2.1. Imaging Problem

Let us consider a two-dimensional three-layer structure as shown
in Fig. 1, where (εi, σi) i = 1, 2, 3, denote the permittivities and
conductivities in each layer and an imperfectly conducting cylinder
is buried in second layer. The metallic cylinder with cross section
described by the equation ρ = F (θ) is illuminated by an incident
plane wave whose electric field vector is parallel to the Z axis (i.e.,
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Figure 1. Geometry of the problem in (x, y) plane of three-layer
structure.

TM polarization). We assume that the time dependence of the field is
harmonic with the factor exp(jωt). Let Einc denote the incident field
form region 1 with incident angle θ1 as follow:

Einc = E+
1 e+jk1 cos θIye−jk1 sin θIxẑ (1)

Owing to the interfaces, the incident plane wave generates three waves
that would exist in the absence of the conducting object. Thus, the
unperturbed field is given by

E =




E1 = E+
1 e+jk1 cos θiye−jk1 sin θ1xẑ + E−1 e−jk1 cos θ1ye−jk1 sin θixẑ,

y ≥ a

E2 = E+
2 e+jk2 cos θ2ye−jk2 sin θ2xẑ + E−2 e−jk2 cos θ2ye−jk21 sin θ2xẑ,

a ≥ y ≥ −a
E3 = E+

3 e+jk3 cos θ3ye−jk3 sin θ3xẑ, y ≤ −a
(2)
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where E+
1 is set to be 1 and

E−1 =
e+j2k1 cos θ1a

[
(Z1 + Z2)(Z3 − Z2)e−j2k2 cos θ2a

−(Z1 − Z2)(Z3 + Z2)e+j2k2 cos θ2a

]
(Z1+Z2)(Z3+Z2)e+j2k2 cos θ2a−(Z1−Z2)(Z3−Z2)e−j2k2 cos θ2a

E+
2 =

1
2
ejk2(sin θ2x−cos θ2a)

[
Z1 + Z2

Z1
e−jk1(sin θ1x−cos θ1a)

+
Z1 − Z2

Z1
E−1 e−jk1(sin θ1x+cos θ1a)

]

E−2 =
1
2
ejk2(sin θ2x+cos θ2a)

[
Z1 − Z2

Z1
e−jk1(sin θ1x−cos θ1a)

+
Z1 + Z2

Z1
E−1 e−jk1(sin θ1x+cos θ1a)

]

E+
3 =

2Z3

Z2 + Z3
E+

2 e−jk2(sin θ2x+cos θ2a)ejk3(sin θ3x+cos θ3a)

k1 sin θ1 = k2 sin θ2 = k3 sin θ3

k2
i = ω2εiµ0 − jωµ0σi i = 1, 2, 3 Im(ki) ≤ 0

Z1 =
η1

cos θ1
, Z2 =

η2

cos θ2
, Z3 =

η3

cos θ3
,

η1 =
√

µ0

ε1
, η2 =

√
µ0

ε2
, η3 =

√
µ0

ε3

At an arbitrary point (x, y) (or (r, θ) in polar coordinates) in regions
1 and 3 the scattered field, �Es = �E − �Ei, can be expressed as

Es(�r ) = −
2π∫
0

G(�r, F (θ′), θ′)J(θ′)dθ′ (3)

where
J(θ) = −jωµ0

√
F 2(θ) + F ′2(θ)Js(θ)

and

G(x, y;x′, y′) =




G1(x, y;x′, y′), y > a

G2(x, y;x′, y′), a > y > −a
G3(x, y;x′, y′), y < −a

(4)
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G1 =
1
2π

∞∫
−∞

je−jγ1(y−a)

(γ2 + γ3)ejγ2(y′+a) + (γ2 − γ3)e−jγ2(y′+a)

(γ1+γ2)(γ2+γ3)ejr2(2a)+(γ1−γ2)(γ2−γ3)e−jγ2(2a)
e−jα(x−x′)dα

G2 =
1
2π

∞∫
−∞

j

2γ2{[
(γ1+γ2)(γ2+γ3)e−jγ2[|y−y′|−2a]+(γ2−γ1)(γ2−γ3)ejγ2[|y−y′|−2a]

(γ1 + γ2)(γ2 + γ3)ejγ2(2a) + (γ1 − γ2)(γ2 − γ3)e−jγ2(2a)

]

+

[
(γ2 − γ1)(γ2 + γ3)ejγ2[y+y′] + (γ2 − γ3)(γ1 + γ2)e−jγ2[y+y′]

(γ1 + γ2)(γ2 + γ3)ejγ2(2a) + (γ1 − γ2)(γ2 − γ3)e−jγ2(2a)

]}

· e−jα(x−x′)dα

G3 =
1
2π

∞∫
−∞

jejγ3(y+a)

(γ1 + γ2)e−jγ2(y′−a) + (γ2 − γ1)ejγ2(y′−a)

(γ1+γ2)(γ2+γ3)ejγ2(2a)+(γ1−γ2)(γ2−γ3)e−jγ2(2a)
e−jα(x−x′)dα

with γ2
i = k2

i − α2, i = 1, 2, 3 and Im(γi) ≤ 0.
Note that G1, G2 and G3 denote the Green’s function which can

be obtained by tedious mathematic manipulation for the line source in
region 2. Note that we might face some difficulties in calculating the
Green’s function. The Green’s function, given by (4), is in the form of
an improper integral which must be evaluated numerically. However,
the integral converges very slowly when (x, y) and (x′, y′) approach the
interface. Fortunately, we find that the integral in Green’s function
may be rewritten as a closed-form term plus a rapidly converging
integral (see Appendix A). Thus the whole integral in the Green’s
function can be calculated efficiently. Js(θ) is the induced surface
current density, which is proportional to the normal derivative of the
electric field on the conductor surface. For an imperfectly conducting
scatterer with finite conductivity, the electromagnetic wave is able
to penetrate into the interior of a scatterer, so the total tangential
electric field at the surface of the scatterer is not equal to zero. As
described in [14] and [15], the boundary condition for this case can
be approximated by assuming that the total tangential electric field
on the scatterer surface is related to surface current density through a
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surface impedance Zs(ω):

n̂× �E = n̂× (Zs �Js) (5)

where n̂ is the outward unit vector normal to the surface of the
scatterer. The scatterer of interest here is a nonmagnetic (µ = µ0),
imperfectly conducting cylinder with minimum radius of curvature
a. The surface impedance is expressed in [14] and [15] as Zs(ω) ∼=√
jωµ0/σ. This approximation is valid as long as |Im(Nc)ka| � 1 and

σ � ωε0, where “Im” means taking the imaginary part, and Nc is the
complex index of refraction of the conductor, given by Nc =

√
1 + σ

jωε0
.

The boundary condition at the surface of the scatterer given by (5) then
yield an integral equation for J(θ):

�Einc
2 + �E2s = Zs �Js

Einc
2 (�r ) =

2π∫
0

G2(�r, F (θ′), θ′)J(θ′)dθ′ + j

√
j

ωµ0σ

J(θ)√
F 2(θ) + F ′2(θ)

(6)

where �Einc
2 is the incident field and �E2s is the scatter field in second

layer.
For the direct scattering problem, the scattered field Es is

calculated by assuming that the shape and conductivity are known.
This can be achieved by first solving J in (6) and then calculating Es
using (3). For the inverse problem, assume the approximate center of
scatterer, which in fact can be any point inside the scatterer, is known.
Then the shape function F (θ) can be expanded as:

F (θ) =
N/2∑
n=0

Bn cos(nθ) +
N/2∑
n=1

Cn sin(nθ) (7)

where Bn and Cn are real coefficients to be determined, and N + 1
is the number of unknowns for the shape function. In the inversion
procedure, the steady state genetic algorithm is used to minimize the
following cost function:

CF =

{
1
Mt

Mt∑
m=1

∣∣∣Eexp
s (�rm)− Ecal

s (�rm)
∣∣∣2 / |Eexp

s (�rm)|2 + α|F ′(θ)|2
}1/2

(8)
where Mt is the total number of measurement points. Eexp

s (�r ) and
Ecal
s (�r ) are the measured and calculated scattered fields, respectively.
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The factor α|F ′(θ)|2 can be interpreted as the smoothness requirement
for the boundary F (θ). To make sure that our numerical result (by
the moment method) is correct, the scattered field of the cylinder of
circular cross section is first calculated by the analytic theorem and
compare with those obtained by the moment method, it is found good
agreement has been achieved. Moreover, the discretization number for
the direct problem is two times that for the inverse problem in our
simulation, since it is crucial that the synthetic data generated by a
direct solver are not like those obtained by the inverse solver.

2.2. Steady-State Genetic Algorithm

Genetic algorithm is a global numerical optimization method based on
genetic recombination and evolution in nature. They use the iterative
optimization procedures that start with some randomly selected
population of potential solutions, and then gradually evolve toward
a better solution through the application of the genetic operators:
reproduction, crossover and mutation operators. In ourproblem, both
parameters Bn and Cn are encoded using Gray code. We employ
steady-state genetic algorithm for the imaging problem investigated.
The variance of the steady-state genetic algorithm is to insert the
new individuals generated by crossover and mutation into the parent
population to form a temporary population. We obtained new offspring
by using rank selection scheme. As soon as the cost function (CF )
changes by < 1% in two successive generations, the algorithm will be
terminated and the final solution is then obtained.

It should be noted that the calculation of the Green’s function
is quite computational expensive. Steady-state genetic algorithm has
not only the characteristic of faster convergence [12, 13], but also the
lower rate of crossover. As a result, it is a suitable scheme to effectively
save the calculation time for the inverse problem as compared with the
generational GA.

3. NUMERICAL RESULTS

We illustrate the performance of the proposed inversion algorithm
and its sensitivity to random noise in the scattered field. Consider
a lossless three- layer structure (σ1 = σ2 = σ3 = 0) and an imperfectly
conducting cylinder buried in region 2. The permittivity in each region
is characterized by, ε1 = ε0, ε2 = 2.55ε0 and ε3 = ε0, respectively, as
shown in Fig. 1. The frequency of the incident wave is chosen to be
3 GHz, with the incident angles equal to 45◦ and 315◦, respectively.
The width of the second layer is 0.3 m. Ten measurement points are
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(a)

(b)

Figure 2. (a) shape function for example 1. The star curve represents
the exact shape, while the solid curves are calculated shape in iteration
process. (b) Shape and conductivity function error for example 1 in
each generation.
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Figure 3. Relative error of shape and conductivity as a function of
noise.

equally separated on two parallel lines at equal spacing in region 1 and
region 3. Thus there are totally 20 measurements in each simulation.
The population size is chosen as 120.

The coding length of each unknown coefficient, Bn (or Cn), is set
to be 20 bits. The search range for the unknown coefficient of the
shape function is chosen to be from −0.015 to 0.015, B0 is chosen to
be 0.02 to 0.05. The crossover probability pc and mutation probability
pm are set to be 0.05 and 0.025. The range of search of the cylinder
conductivity is from 50 to 1000 (S/m). In the following simulation, the
CPU time is about 6 hours per case on a P4 3.0 GHz Computer.

In the first example, the shape function is chosen to be F (θ) =
(0.03) m. The chosen conductivity is 100 S/m. The reconstructed
shape fimction for the best population member is plotted in Fig. 2(a)
with the shape and the conductivity error shown in Fig. 2(b).
The reconstructed result is quite good. Here, the shape function
discrepancy is defined as

DFR =


 1
N ′

N ′∑
i=1

[
F cal(θi)− F (θi)

]2
/F 2(θi)




1/2

(9)

where N ′ is set to 1000.
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(a)

(b)

Figure 4. (a) shape function for example 2. The star curve represents
the exact shape, while the solid curves are calculated shape in iteration
process. (b) Shape and conductivity function error for example 1 in
each generation.
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(a)

(b)

Figure 5. (a) shape fimction for example 3. The star curve represents
the exact shape, while the solid curves are calculated shape in iteration
process. (b) Shape and conductivity function error for example 3 in
each generation.
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The conductivity discrepancy is defined as

DSIG =

∣∣∣∣∣σ
cal − σ

σ

∣∣∣∣∣ (10)

In the second example, for investigating the sensiffvity of the imaging
algorithm against random noise, we added the uniform noise to the real
and imaginary parts of the simulated scattered fields. We choose the
shape function F (θ) = (0.03 + 0.01 cos 2θ) m and the conductivity is
100 S/m. Normalized standard deviations of 10−5, 10−4, 10−3, 10−2 and
10−1 are used in the simulations. The shape and conductivity error vs.
normalized noise level is plotted in Fig. 3. It is found that the effect of
noise to the shape reconstruction is negligible for normalized standard
deviations below 10−3. But the effect of noise to the conductivity
reconstruction is significant for normalized standard deviations over
10−4.

In the third example, the shape function is chosen to be F (θ) =
(0.03 + 0.005 cos 2θ) m. The chosen conductivity is 100 S/m. The
reconstructed shape function for the best population member is plotted
in Fig. 4(a) with the shape and the conductivity error shown in
Fig. 4(b). The reconstructed shape error is < 5%.

In the fourth example, the shape function is chosen to be F (θ) =
(0.03 + 0.01 sin 3θ) m. The chosen conductivity is 100 S/m. The
purpose of this example is to show that the proposed scheme is
capable to reconstruct the scatterer whose shape has three concavities.
The reconstructed shape fimction for the best population member is
plotted in Fig. 5(a) with the shape and the conductivity error shown
in Fig. 5(b). The reconstructed shape error is < 5%.

4. CONCLUSIONS

We have reported a study of applying the genetic algorithm
to reconstruct the shapes and the conductivity of an embedded
conducting cylinder. Based on the boundary condition and measured
scattered field, we have derived a set of nonlinear integral equations
and reformulated the imaging problem into an optimization one.
The genetic algorithm is then employed to de-embed the microwave
image of metallic cylinder. In our experience, the main difficulties
in applying the genetic algorithm to the problem are to choose the
suitable parameters, such as the population size, coding length of
the string (L), crossover probability (pc), and mutation probability
(Pm). Different parameter sets will affect the speed of convergence
as well as the computation time. Numerical results illustrate that
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the conductivity is more sensitive to noise than the shape function is.
Numerical results also show that good shape reconstruction can be
achieved as long as the normalized noise level is < 10−3. But the good
conductivity reconstruction can be achieved only the normalized noise
level is 10−5.

APPENDIX A.

To calculate the Green’s function, we can use the following formula.
∞∫
u

xr−1e−βx cos δxdx =
1
2
(β + jα)−rΓ[r, (β + jδ)u]

+
1
2
(β − jα)−rΓ[r, (β − jδ)u] (A1)

for Reβ > |Imδ| where

Γ(α,Z) =
∞∫
z

e−ttα−1dt

Γ is the incomplete Gamma function which has the following properties

Γ(−n, z) =
(−1)n

n!

[
Γ(0, Z)− e−z

n−1∑
m=0

(−1)m
m!

zm+1

]

Γ(0, z) = −γ − ln z −
∞∑
n=1

(−1)n
zn

(n + 1)!
[| arg(z)| < π] (A2)

in which γ is Euler’s constant, i.e., γ = 0.5772156649.
Let us consider the following integral

G1 =
1
2π

∞∫
−∞

je−jr1(y−a)

(r2 + r3)ejr2(y′+a) + (r2 − r3)e−jr2(y′+a)

(r1+r2)(r2+r3)ejr2(2a)+(r1−r2)(r2−r3)e−jr2(2a)
e−jα(x−x′)dα

=
1
π

∞∫
−∞

je−jr1(y−a)

(r2 + r3)ejr2(y′+a) + (r2 − r3)e−jr2(y′+a)

(r1+r2)(r2+r3)ejr2(2a)+(r1−r2)(r2−r3)e−jr2(2a)
cosα(x−x′)dα
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where r2
i = k2

i − α2, i = 1, 2, 3, Im(γi) ≤ 0, y ≥ a, a ≥ y ≥ −a.
The integral G1 may be rewritten as follows

G1 =
1
π

∞∫
−∞

je−jr1(y−a)

(r2 + r3)ejr2(y′+a) + (r2 − r3)e−jr2(y′+a)

(r1+r2)(r2+r3)ejr2(2a)+(r1−r2)(r2−r3)e−jr2(2a)
cosα(x−x′)dα

+
1
2π

∞∫
α0

[
e−α(y−y′)

α
+

(
k2

3 − k2
2

)
e−α(y+y′+2a)

4α3

]
cosα(x− x′)dα

− 1
2π

∞∫
α0

[
e−α(y−y′)

α
+

(
k2

3 − k2
2

)
e−α(y+y′+2a)

4α3

]
cosα(x− x′)dα

in general, we choose α0 � |ki|, i = 1, 2, 3. By Eq. (A1), we get

− 1
2π

∞∫
α0

[
e−α(y−y′)

α
+

(
k2

3 − k2
2

)
e−α(y+y′+2a)

4α3

]
cosα(x− x′)dα

=− 1
4π

{
Γ[0, [(y − y′) + j(x− x′)]α0] + Γ[0, [(y − y′)− j(x− x′)]α0]

}

−
(
k2

3 − k2
2

)
16π




[(y + y′ + 2a) + j(x− x′)]2

·Γ[−2, [(y + y′ + 2a) + j(x− x′)]α0]
+ [(y + y′ + 2a)− j(x− x′)]2

·Γ[−2, [(y + y′ + 2a)− j(x− x′)]α0]




Using the above relation, we obtain

G1 =
1
π

∞∫
0

je−jr1(y−a)

(r2 + r3)ejr2(y′+a) + (r2 − r3)e−jr2(y′+a)

(r1+r2)(r2+r3)ejr2(2a)+(r1−r2)(r2−r3)e−jr2(2a)
cosα(x−x′)dα

− 1
2π

∞∫
α0

[
e−α(y−y′)

α
+

(
k2

3 − k2
2

)
e−α(y+y′+2a)

4α3

]
cosα(x− x′)dα

− 1
4π

{
Γ[0, [(y−y′)+j(x−x′)]α0]+Γ[0, [(y−y′)−j(x−x′)]α0]

}
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−
(
k2

3 − k2
2

)
16π




[(y + y′ + 2a) + j(x− x′)]2

·Γ[−2, [(y + y′ + 2a) + j(x− x′)]α0]
+ [(y + y′ + 2a)− j(x− x′)]2

·Γ[−2, [(y + y′ + 2a)− j(x− x′)]α0]




(A3)

Now, the integral G1 is written as a rapidly converging integral plus a
dominate integral. We can use Eq. (A3) to evaluate G1 by means of
Simpson’s rule easily.

Similarly,

G2 =
1
π

∞∫
0

j

2r2{[
(r1+r2)(r2+r3)e−jr2[|y−y′|−2a]+(r2−r1)(r2−r3)ejr2[|y−y′|−2a]

(r1 + r2)(r2 + r3)ejr2(2a) + (r1 − r2)(r2 − r3)e−jr2(2a)

]

+

[
(r2 − r1)(r2 + r3)ejr2[y+y′] + (r2 − r3)(r1 + r2)e−jr2[y+y′]

(r1 + r2)(r2 + r3)ejr2(2a) + (r1 − r2)(r2 − r3)e−jr2(2a)

]

− je−jr2|y−y
′|

2r2

}
cosα(x−x′)dα +

j

4
H

(2)
0

(
k2

√
(x−x′)+(y−y′)

)

+
1
2π

∞∫
α0

[(
k2

3 − k2
2

) (
k2

1 − k2
2

)
e−α[4a−|y−y′|]

16α5

+
(
k2

1−k2
2

)
4

e−α(2a−y−y′)

α3
+

(
k2

3−k2
2

)
4

e−α(y′+y+2a)

α3

]
cosα(x−x′)dα

−
(
k2

1 − k2
2

)
16π




[(2a− y − y′) + j(x− x′)]2

·Γ[−2, [(2a− y − y′) + j(x− x′)]α0]
+[(2a− y − y′)− j(x− x′)]2

·Γ[−2, [(2a− y − y′)− j(x− x′)]α0]




−
(
k2

3 − k2
2

)
16π




[(y + y′ + 2a) + j(x− x′)]2

·Γ[−2, [(y + y′ + 2a) + j(x− x′)]α0]
+ [(y + y′ + 2a)− j(x− x′)]2

·Γ[−2, [(y + y′ + 2a)− j(x− x′)]α0]




−
(
k2

1 − k2
2

) (
k2

3 − k2
2

)
64π

·
{

[4a− |y − y′|+j(x− x′)]4Γ[−4, [4a− |y − y′|+j(x− x′)]α0]
+[4a− |y−y′|−j(x− x′)]4Γ[−4, [4a− |y−y′|−j(x− x′)]α0]

}
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And

G3 =
1
2π

∞∫
−∞

jejr3(y+a)

(r1 + r2)e−jr2(y′−a) + (r2 − r1)ejr2(y′−a)

(r1+r2)(r2+r3)ejr2(2a)+(r1−r2)(r2−r3)e−jr2(2a)
e−jα(x−x′)dα

=
1
π

∞∫
0

jejr3(y+a)

(r1 + r2)e−jr2(y′−a) + (r2 − r1)ejr2(y′−a)

(r1+r2)(r2+r3)ejr2(2a)+(r1−r2)(r2−r3)e−jr2(2a)
e−jα(x−x′)dα

+
1
2π

∞∫
α0

[
e−α(y′−y)

α
+

(
k2

1 − k2
2

)
e−α(2a−y−y′)

4α3

]
cosα(x− x′)dα

− 1
4π

{
Γ[0, [(y′−y)+j(x−x′)]α0]+Γ[0, [(y′−y)−j(x−x′)]α0]

}
−

(
k2

1 − k2
2

)
16π

·
{

[(2a−y−y′)+j(x−x′)]2Γ[−2, [2a−y−y′)+j(x−x′)]α0]
+[(2a−y−y′)−j(x−x′)]2Γ[−2, [(2a−y−y′)−j(x−x′)]α0]

}
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