login
Vol. 120
Latest Volume
All Volumes
PIERM 131 [2025] PIERM 130 [2024] PIERM 129 [2024] PIERM 128 [2024] PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2023-10-14
Impact of Phase Noise on Sidelobe Cancellation System Utilizing Distributed Phase-Lock-Loops
By
Progress In Electromagnetics Research M, Vol. 120, 1-14, 2023
Abstract
Phase noise is a common hardware impairment that affects the performance of beamforming systems. Therefore, analysis of its impact is of great practical interest. Although Sidelobe Cancellation (SLC) is a mature technique, existing analyses typically ignore the effect of phase noise, due to the shared assumption that the down-conversion circuits have a common local-oscillator (LO). However, when distributed phase-lock-loops (PLLs) are used, the impact of phase noise cannot be neglected. Therefore, this paper derives new mathematical models of performances, including signal-to-interference-plus-noise ratio (SINR) and beamforming gain. Exact and approximated analytical models are obtained, respectively. In addition, we propose an average beam pattern formula to replace the traditional beam pattern formula, to improve the consistency between beam null depth and the beamforming gain. The theoretical findings are verified through signal-level simulations.
Citation
Qing Wang, Kang Luo, and Huanding Qin, "Impact of Phase Noise on Sidelobe Cancellation System Utilizing Distributed Phase-Lock-Loops," Progress In Electromagnetics Research M, Vol. 120, 1-14, 2023.
doi:10.2528/PIERM23070601
References

1. Wang, X., W. Zhai, and A. Farina, "A unified framework of adaptive sidelobe canceller design by antenna/subarray selection," Signal Processing, Vol. 189, 1-14, 2021.

2. Mohammed, J. R. and K. H. Sayidmarie, "Performance evaluation of the adaptive sidelobe canceller system with various auxiliary configurations," International Journal of Electronics and Communications, Vol. 89, 179-185, 2017.
doi:10.1016/j.aeue.2017.06.039

3. Kaitsuka, T. and T. Inoue, "Interference cancellation system for satellite communication earth station," IEEE Transactions on Communications, Vol. 32, No. 7, 796-803, 1984.
doi:10.1109/TCOM.1984.1096145

4. Wang, Q., Y. Li, K. Luo, Q. Wang, F. He, and B. Li, "Auxiliary antenna array analysis and design for sidelobe interference cancellation of satellite communication system," Progress In Electromagnetics Research M, Vol. 96, 55-67, 2020.
doi:10.2528/PIERM20071502

5. Heath, Jr., R. W., T. Wu, Y. H. Kwon, and A. C. K. Soong, "Multiuser MIMO in distributed antenna systems with out-of-cell interference," IEEE Transactions on Signal Processing, Vol. 59, 4885-4899, 2011.
doi:10.1109/TSP.2011.2161985

6. Wang, Q., D. Debbarma, A. Lo, Z. Cao, I. Niemegeers, and S. H. D. Groot, "Distributed antenna system for mitigating shadowing effect in 60 GHz WLAN," Wireless Personal Communications, Vol. 82, 811-832, 2015.
doi:10.1007/s11277-014-2254-5

7. Rasekh, M. E., M. Abdelghany, U. Madhowz, and M. Rodwell, "Phase noise analysis for mmwave massive MIMO: A design framework for scaling via tiled architectures," Proceedings of the 2019 53rd Annual Conference on Information Sciences and Systems (CISS), 1-6, Baltimore, MD, USA, March 2019.

8. Sekiguchi, T., N. Shiga, S. Nakajima, K. Otobe, N. Kuwata, K. Matsuzaki, and H. Hayashi, "Ultra small sized low noise block downconverter module," Proceedings of the IEEE 1992 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest of Papers, {158, Albuquerque,, 155-158, Albuquerque, NM, USA, 1992.

9. Kamio, K. and T. Sato, "An adaptive sidelobe cancellation algorithm for high-gain antenna arrays," Electronics and Communications in Japan Part I --- Communications, Vol. 87, 11-18, 2004.
doi:10.1002/ecja.10178

10. Biguesh, M., S. Valaee, B. Champagne, M. H. Bastani, and F. Farzaneh, "A robust sidelobe canceller for reflector antenna using signal subspace eigenvectors," Revue HF Tijdschrift 2001, 37-47, 2001.

11. Krichene, H. A., M. T. Ho, S. H. Talisa, G. F. Ricciardi, and K. C. Lauritzen, "Effects of channel mismatch and phase noise on jamming cancellation," Proceedings of the 2014 IEEE Radar Conference, 38-43, Cincinnati, OH, USA, May 2014.

12. Zhou, M., Q. Wang, F. He, Y. Zhang, K. Luo, and J. Meng, "Impacts of phase noise on the performance of adaptive side-lobe cancellation system," Proceedings of the 2021 IEEE 4th International Conference on Electronic Information and Communication Technology (ICEICT), 106-109, Xi'an, China, 2021.
doi:10.1109/ICEICT53123.2021.9531150

13. Schenk, T. C. W., X. J. Tao, P. F. M. Smulders, and E. R. Fledderus, "On the influence of phase noise induced ICI in MIMO OFDM systems," IEEE Communications Letters, Vol. 9, 682-684, 2005.
doi:10.1109/LCOMM.2005.1496581

14. Gokceoglu, A. H., Y. Zou, M. Valkama, P. C. Sofotasios, P. Mathecken, and D. Cabric, "Mutual information analysis of OFDM radio link under phase noise, IQ imbalance and frequency-selective fading channel," IEEE Transactions on Wireless Communications, Vol. 12, 3048-3059, 2013.
doi:10.1109/TWC.2013.042213.121618

15. Hoefel, R. P. F., "IEEE 802.11ax: On hardware impairments and mitigation schemes for OFDM uplink multi-user MIMO PHY," Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), 1-5, Porto, June 2018.

16. Pitarokoilis, A., S. K. Mohammed, and E. G. Larsson, "Uplink performance of time-reversal MRC in massive MIMO systems subject to phase noise," IEEE Transactions on Wireless Communications, Vol. 14, 711-723, 2015.
doi:10.1109/TWC.2014.2359018

17. Pitarokoilis, A., E. Bjornson, and E. G. Larsson, "Performance of the massive MIMO uplink with OFDM and phase noise," IEEE Communications Letters, Vol. 20, 1595-1598, 2016.
doi:10.1109/LCOMM.2016.2581169

18. Chatelier, B. and M. Crussiere, "On the impact of phase noise on beamforming performance for mmwave massive MIMO systems," Proceedings of the 2022 IEEE Wireless Communications and Networking Conference (WCNC), 1563-1568, Austin, TX, USA, 2022.
doi:10.1109/WCNC51071.2022.9771690

19. Corvaja, R. and A. Garcia-Armada, "Analysis of SVD-based hybrid schemes for massive MIMO with phase noise and imperfect channel estimation," IEEE Transactions on Vehicular Technology, Vol. 69, 7325-7338, 2020.
doi:10.1109/TVT.2020.2990351

20. Fang, Y., L. Qiu, X. Liang, and C. Ren, "Cell-free Massive MIMO systems with oscillator phase noise: Performance analysis and power control," IEEE Transactions on Vehicular Technology, Vol. 70, 10048-10064, 2021.
doi:10.1109/TVT.2021.3100862

21. Jin, S.-N., D.-W. Yue, and H. H. Nguyen, "Spectral efficiency of a frequency-selective cell-free massive MIMO system with phase noise," IEEE Wireless Communications Letters, Vol. 10, 483-487, 2020.

22. Chen, X., H. Wang, W. Fan, Y. Zou, A. Wolfgang, T. Svensson, and J. Luo, "Phase noise effect on MIMO-OFDM systems with common and independent oscillators," Wireless Communications and Mobile Computing, Vol. 2017, 1-12, 2017.

23. Carboun, D. O., R. A. Games, and R. T. Williams, "A principal components sidelobe cancellation algorithm," Proceedings of the 1990 Conference Record Twenty-Fourth Asilomar Conference on Signals, Systems and Computers, 763-768, Pacific Grove, CA, USA, 1990.

24. Zhou, M., Q. Wang, F. He, and J. Meng, "Impacts of phase noise on the anti-jamming performance of power inversion algorithm," Sensors, Vol. 22, 1-13, 2022.
doi:10.3390/s22072715