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Impact of Phase Noise on Sidelobe Cancellation System Utilizing
Distributed Phase-Lock-Loops
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Abstract—Phase noise is a common hardware impairment that affects the performance of beamforming
systems. Therefore, analysis of its impact is of great practical interest. Although Sidelobe Cancellation
(SLC) is a mature technique, existing analyses typically ignore the effect of phase noise, due to the
shared assumption that the down-conversion circuits have a common local-oscillator (LO). However,
when distributed phase-lock-loops (PLLs) are used, the impact of phase noise cannot be neglected.
Therefore, this paper derives new mathematical models of performances, including signal-to-interference-
plus-noise ratio (SINR) and beamforming gain. Exact and approximated analytical models are obtained,
respectively. In addition, we propose an average beam pattern formula to replace the traditional beam
pattern formula, to improve the consistency between beam null depth and the beamforming gain. The
theoretical findings are verified through signal-level simulations.

1. INTRODUCTION

Sidelobe cancellation (SLC) is a beamforming technique to suppress interference in radio systems that
employ high-gain antennas [1, 2]. It is commonly used to mitigate interference, such as that from
terrestrial communication systems, in satellite communication (SATCOM) earth stations [3, 4]. To
perform beamforming in the digital domain, the received radiofrequency (RF) signals must first be
downconverted into an intermediate frequency (IF) band or baseband and then sampled by Analog
to Digital Converters (ADCs). The down-conversion (D/C) process unavoidably introduces phase
noise from the local-oscillators (LOs), which distort the IF signals by introducing random phase shifts.
This distortion reduces the signal-to-noise ratio (SNR) of the received signal and impairs beamforming
performance. Therefore, comprehending and quantitatively analyzing the impact of phase noise will
significantly aid in practical design.

The purpose of this paper is to investigate how phase noise affects interference cancellation
performance in an SLC system that employs a distributed auxiliary array (DAA) and distributed phase-
lock loops (PLLs) for the use in SATCOM earth stations. To the best of our knowledge, this subject has
not yet been explored. It is worth noting that we are focusing on DAA with distributed PLLs instead of
conventional co-located auxiliary arrays (CAAs) with a common PLL. There are two-fold motivations:

First, DAA is preferred over traditional SLC systems that use a CAA due to its advantages such
as enhanced spatial resolution, flexibility in deployment, and less vulnerability to line-of-sight blockage.
The same advantage has led to the development of distributed beamforming techniques in cellular
communications [5, 6]. Unlike CAA, the interantenna spacing in a DAA is typically much larger than a
wavelength, often several meters, resulting in significant spatial separation between auxiliary antennas.

Second, the utilization of distributed phase-lock loops (PLLs) is essential in implementing DAA.
When utilizing distributed PLLs, each auxiliary antenna is equipped with an individual D/C circuit, and
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a common reference PLL is employed to generate the LO signal. Using distributed PLLs is advantageous
for DAA because it is more feasible to distribute low-frequency reference signals than high-frequency
LO signals, when antenna spacing is large [7, 8]. On the contrary, previous studies have mainly utilized
a common PLL that is primarily applicable to CAA.

Many studies on SLC system analysis assume or imply a D/C architecture with a common LO, as
seen in [1, 2, 4, 9, 10]. Although a recent study [11] examined the impact of phase noise, its primary focus
was on analyzing the beamforming pattern. In addition, their system configuration differs significantly
from ours in that they used a simplified one-dimensional linear antenna array, considered only one
auxiliary antenna and a single jammer, and assumed the auxiliary channel to be free from phase noise.
On the other hand, our recent study [12] focused on a simplified system that only had one auxiliary
antenna but took into account the phase noise in the auxiliary channel. The limitation of [12] lies
in its derivation in the frequency domain, which hinders its extension to more complex configurations
involving multiple auxiliary antennas and interferers.

There is rich literature that focuses on modeling and analysis of the impact of phase noise on
MIMO systems, including regular MIMO, e.g., [13–15], massive MIMO and cell-free MIMO, e.g., [7, 16–
21]. For regular MIMO, which refers to MIMO with a small number of antennas, a shared LO at the
base station is usually considered due to the small array size [13]. Therefore, the main research focus
is on inter-symbol-interference (ICI) and common-phase error (CPE), rather than the beamforming
performance. The major concern in massive MIMO and cell-free MIMO systems is the impact of phase
noise on beamforming with tiled array or arrays [18]. A tiled array is composed of identical elements,
in contrast to the SLC system which comprises a high-gain antenna and an array of low-gain auxiliary
elements. Additionally, our focus on uncontrollable interference, whether intentional or unintentional,
distinguishes our work from current studies that primarily address controllable inter-user and/or inter-
cell interference. The differences between SLC systems and other systems require the development of
new models that can accurately capture their unique features.

Our paper makes three contributions. Firstly, we establish a mathematical model for SLC system
with DAA and distributed PLLs. Secondly, we present new exact and approximated formulas for signal-
to-interference-plus-noise ratio (SINR) and beamforming gain. Thirdly, we propose an average beam
pattern formula to improve consistency between beam null depth and beamforming gain.

2. SIGNAL MODEL AND PERFORMANCE ANALYSIS

2.1. Signal Model

Consider an SLC system illustrated in Figure 1, in which the main antenna is a high-gain antenna (e.g., a
parabolic antenna), and the auxiliary array has an arbitrary geometry and consists of low-gain elements.
The received RF signals of the main antenna and auxiliary antennas are downconverted to baseband
using independent downconverters which are deployed close to the antennas. The downconverters have
separate PLLs for generating the LO signals, while the PLLs are synchronized with a common reference
clock signal.

The received signal of the main antenna is

d = (gss+ gcc) e
jφm + nm (1)

where s is the signal-of-interest (SOI), c = [ck]K×1 the signal vector of the K interferers, nm the
additive white Gaussian noise (AWGN) of main antenna, gs the gain of the main antenna to the SOI,
gc = [gc,k]1×K the gain vector of the main antenna to the interferers, and φm the phase noise of the
PLL of the main antenna.

Similarly, the received signal of the auxiliary array is

x = (ass+Acc)⊙ ϕ+ nx (2)

where nx = [nx,k]N×1 is the AWGN vector of the auxiliary array; as is the auxiliary array vector of
the SOI; A = [ac,k]N×K is composed by the auxiliary array vectors of the K interferers; ϕ = [ejφn ]N×1,
and φn is the phase noise of the nth auxiliary antenna. Due to the distributed PLLs, the phase noises
of the main and auxiliary antennas are mutually independent. In addition, it is typically assumed that
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Figure 1. Illustration of SLC system with distributed PLLs.

φn is Gaussian. We also assume that they follow the same distribution considering that the PLLs are
identical [22].

The output of the SLC system is
e = d−wHx (3)

where w is the beamforming vector. w is calculated using the Wiener method, i.e.,

w = R−1
xx Rxd (4)

where Rxx = E(xxH), and Rxd = E(xd∗). By examining Eqs. (1) and (2), we can observe that phase
noise causes multiplicative noise via disturbance to the phases of the received signals. This noise effect
leads to distortion of the auto-correlation matrix and crosscorrelation vector, causing deviations in
the beamforming vector from its ideal state, ultimately resulting in degraded interference cancellation
performance.

2.2. Exact Analysis

In this section, we turn to calculate the beamforming output SINR and then obtain the beamforming
gain.

Since phase noise φm is typically small, we can approximate ejφm ≈ 1+jφm, which can be obtained
by Taylor expansion. Substituting ejφm ≈ 1 + jφm into Eq. (1), we get

d ≈ gss+ gss · jφm + gcce
jφm + nm (5)

Since the second term gss · jφm is uncorrelated with gss, it is therefore treated as noise. The received
SINR of the main antenna is given by

SINRin =
E
(
|gss|2

)
E
(
|gss · jφm + gccejφm + nm|2

)
=

ps|gs|2∑
k

pk|gc,k|2 + ps|gs|2E
(
φ2
)
+ pn

=
ps|gs|2∑

k

pk|gc,k|2 + ps|gs|2σ2
φ + pn

(6)
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The last equality is because φ is zero-mean Gaussian with variance σ2
φ [16].

We can also get the received SNR of the main antenna as

SNR =
ps|gs|2

ps|gs|2σ2
φ + pn

=
1

σ2
φ +

pn
ps|gs|2

(7)

As we can see, SNR is upper bounded by 1/σ2
φ, as the SOI power increases to infinity. Similarly,

phase noise will also affect the maximum INR of the main and auxiliary antennas. The limiting effect
on SNR and INR is the essential reason for the impact on the system performance.

Similarly, the received INR of the main antenna is

INR =
E
(∣∣gccejφm

∣∣2)
pn

=

∑
k

pk|gc,k|2

pn
(8)

Note that phase noise does not change interference power. The output signal of the SLC system is

e = (gss+ gcc) e
jφm + nm −wH ((ass+Acc)⊙ ϕ+ nx)

= gss+ gcc+ n̂m −wH (ass+Acc+ n̂x)

=
(
gs −wHas

)
s+

(
gc −wHAc

)
c+

(
n̂m −wHn̂x

)
(9)

where,

n̂m = (gss+ gcc) jφm + nm (10)

n̂x = (ass+Acc)⊙ jφ+ nx (11)

Therefore, the output SINR is

SINRout =
ps
∣∣gs −wHas

∣∣2∑
k

pk
∣∣gc,k −wHac,k

∣∣2 + ptot
(12)

where ptot = E(|n̂m −wHn̂x|2) is the total effective noise power, which is calculated to be

ptot = pn

(
1 + ∥w∥2

)
+ E

(∣∣gss · jφm −wHass⊙ jφ
∣∣2)+ E

(∣∣gcc · jφm −wHAcc⊙ jφ
∣∣2)

= pn

(
1 + ∥w∥2

)
+ ps

(
|gs|2 σ2

φ +wH
(
asa

H
s ⊙ Φ̂

)
w
)
+ σ2

φgcPgH
c +wH

(
AcPA

H
c ⊙ Φ̂

)
w (13)

where Φ̂ = E(jφ(jφ)H) = σ2
φIN .

Discussion: We see from Eq. (13) that the signal components due to phase noise are uncorrelated
with each other, so they cannot be cancelled out. As a result, the power of these signal components
linearly increases with the interference signal power pk. Even if the correlated terms in Eq. (13) are fully
cancelled, the output SINR will still decrease with an increase in pk. This implies that the uncorrelated
signal components set an upper bound for the output SINR.

Next, we turn to derive the beamforming vector w. First, we need to calculate Rxx and Rxd. It is
easy to prove that E((a⊙ b)(a⊙ b)H) = E(aaH)⊙E(bbH), when a and b are independent. Therefore,

Rxx = E
(
(ass+Acc) (ass+Acc)

H
)
⊙ E

(
ϕϕH

)
+ E

(
nxn

H
x

)
= R̄xx ⊙Φ+ pnIN (14)

where pn is the AWGN noise power, and

R̄xx = E
(
(ass+Acc) (ass+Acc)

H
)
= psasa

H
s +AcPA

H
c (15)

in which, ps is the power of the SOI, and P = diag{p1, . . . , pK} is a diagonal matrix whose diagonal
elements are the power of the K jamming signals. In addition, we can derive that

Φ = E
(
ϕϕH

)
=
[
E
(
ejφme−jφn

)]
N×N

(16)
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We can see that when m = n, E(ejφme−jφn) = 1; otherwise, E(ejφme−jφn) = E(ejφm)E(ejφn) because
the phase noises are independent. Since the φ is Gaussian, we have

E
(
ejφ
)
=

∫
ejφf (φ) dφ =

∫
ejφ · 1√

2πσ
e−

φ2

2σ2 dφ = e−
σ2

2

∫
1√
2πσ

e−
φ2

2σ2+jφ+σ2

2 dφ

= e−
σ2

2

∫
1√
2πσ

e−
(φ−jσ2)

2

2σ2 dφ = e−
σ2

2 (17)

Hence, we have

E
(
ejφme−jφn

)
=

{
1 m = n

e−σ2
φ m ̸= n

(18)

Substituting Eq. (18) into Eq. (16), we can get

Φ =

 1 . . . e−σ2
φ

...
. . .

...

e−σ2
φ . . . 1

 (19)

which is a symmetric matrix. Substituting Eq. (15) and (19) into Eq. (14), we can then obtain Rxx.
Following the same procedure, we can derive that

Rxd = e−σ2
φ(psasg

∗
s +APgH

c ) = e−σ2
φRxd (20)

where Rxd is the cross-correlation vector when phase noise is not present. Eqs. (14) and (20) can then
be used to calculate the beamforming vector w

w =
(
R̄xx ⊙Φ+ pnIN

)−1 · e−σ2
φRxd (21)

Phase noise introduces tapering effect on the interference signal auto-correlation matrix R̄xx, and a
scaling effect is imposed on the cross-correlation vector, which forces the beamforming vector to deviate
from the ideal.

The above derivations allow us to calculate SINRin, the received SINR of the main antennas, and
SINRout, the output SINR of the SLC system. We are now ready to derive the beamforming gain of
the system.

The beamforming gain is traditionally defined as the gain of SINR, i.e.,

G1 = SINRout/SINRin (22)

However, there are several drawbacks for this measure. First, the gain increases with the interference
power. Second, there is usually a minimum SINR or SNR threshold for a practical communication
system, which is not considered in the measure. For example, satellite communications typically use
QPSK modulation, and a typically required decoding SNR threshold is 3 ∼ 5 dB. Hence, we propose to
use the following measure

G2 = pa/pb (23)

where pb is the solution of SINRin(p) = ρth; pa is the solution of SINRout(p) = ρth; and ρth is the
decoding SNR threshold.

There could be multiple definitions of the interference signal power p when multiple interferers are
present. In this paper, we define p = p1 = . . . = pk, i.e., the interference powers are the same. This
corresponds to the scenario where multiple interferers are located at the same distance to the victim
receiver and use the same transmission power. Other definitions may be used depending on the question
at hand.

2.3. Approximated Analysis

To obtain intuitive observations, the aforementioned formulas are rather complex. Hence, in this section,
we introduce certain assumptions to simplify the formulas. The major assumptions considered are:
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• SNR is low. This is reasonable for SATCOM, of which the SNR received by the main antenna
is typically less than 10 dB due to power limitation of the transponders. We can then ignore the
SOI received by the auxiliary antennas, as well as the effect of phase noise on SNR. When the
SOI power received by the auxiliary array is low, the signal cancellation effect can be ignored [23].
Mathematically, the low SNR regime is defined as ps∥as∥2 ≪ pn, or SNR ≪ |gs|2/∥as∥2. Since the
main antenna gain is usually tens of dB larger than the auxiliary array gain, the low SNR regime
can cover typical SNR range in practice. Unfortunately, when SNR is high, the behavior of the
output SINR becomes complex, so a simple approximated formula may not exist.

• The auxiliary array gain is much larger than the sidelobe gain of the main antenna, such that
∥w∥2 ≪ 1. Under this assumption, the noise amplification effect can be ignored.

• The correlated components of interference signals can be completely cancelled. Although complete
cancellation is not practical, we anticipate that the coherent interference residual will be minimal
if the system is designed appropriately. Particularly for this study, one concern is that the
beamforming factor is biased due to the distorted auto-correlation matrix and cross-correlation
vector. Nonetheless, if the phase noise variance is known exactly, we can compensate the distortions.
Specifically, we can obtain the non-distorted R̄xx = Rxx ⊘ Φ, where ⊘ is Hadamard division

(element-wise), and Rxd = eσ
2
φRxd. Note that this compensation is not used in our simulations.

Under this assumption, we can derive that gc,k ≈ wH
optac,k.

We can then obtain the following approximated formulas

SINRin ≈ ps|gs|2∑
k

pk|gc,k|2 + pn
(24)

SINRout ≈ ps |gs|2

pn +
∑
k

pk

(
|gc,k|2 σ2

φ +wH
optac,ka

H
c,k ⊙ Φ̂wopt

) ≈ ps |gs|2

pn + (K + 1)σ2
φ

∑
k

pk |gc,k|2
(25)

Equation (24) is derived directly from Eq. (6). Based on the assumption that the SNR is low, while the
phase noise variance σ2

φ is small, we have ps|gs|2σ2
φ ≪ pn. Hence, the term ps|gs|2σ2

φ in the denominator
of Eq. (6) can be ignored, which results in the approximation of Eq. (24). The approximation of
the denominator in Eq. (25) is further explained in Appendix A. We note that this approximation
exaggerates the power of phase noise-induced components, thus results in an underestimated output
SINR. This will help explain the simulation results presented later.

Substituting Eq. (24) and Eq. (25) into Eq. (2), we can get an approximation of G1 as

G̃1 ≈

∑
k

pk|gc,k|2 + pn

(K + 1)σ2
φ

∑
k

pk |gc,k|2 + pn
=

INR+ 1

(K + 1)σ2
φ · INR + 1

(26)

When INR is high, the noise term can be ignored, and we can then derive the approximated maximum
beamforming gain as

Ĝ1 =
1

(K + 1)σ2
φ

(27)

Therefore, the maximum beamforming gain is proportional with the maximum SNR (cf. Eq. (7)) and
decreases with the number of interferers. Substituting Eq. (24) and Eq. (25 into Eq. (23), we can get

G̃2 = Ĝ1 =
1

(K + 1)σ2
φ

(28)

2.4. Beam Pattern

Beam pattern is usually used to visualize the performance of beamforming systems. The null depth can
be used to indicate the performance. The deeper the nulls are at the interference angles, the better the
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performance is. However, we find that beam pattern may be misguiding when phase noises are present.
Traditionally, the composite array beam pattern is calculated by

f (θ) =
∣∣g (θ)−wHa (θ)

∣∣2 (29)

where θ is a vector consisting of azimuth and elevation angles. The problem of Eq. (29) is that it
implicitly assumes that the received signals can be added coherently. That is, Eq. (29) is equivalent to
f(θ) = E(|g(θ)s−wHa(θ)s|2), where E(|s|2) = 1. This is, however, not valid since the independent phase
noises of the circuits induce uncorrelated signal components. If we use Eq. (29), we would anticipate
that there will be a beamforming vector that can produce an infinitely deep null, which means that the
interferences can be completely cancelled. This is contradictory with Eqs. (12) and (13), which suggest
that there will always be residuals due to the uncorrelated signal components induced by phase noises.
Hence, beam pattern analysis should consider the impact of phase noise when distributed PLLs are
used. To enable beam pattern analysis while phase noise is present, we propose average beam pattern
defined as

f (θ) = E
(∣∣g (θ) · sejφm −wHa (θ)⊙ sϕ

∣∣2)
= |g (θ)|2 +wH

(
a (θ)aH (θ)⊙Φ

)
w − 2e−σ2

φRe
(
wHa (θ) g∗ (θ)

)
(30)

The derivations above take the impact of phase noise as a modulation effect on the received signals.
Another view is that the phase noises cause jittering of the beamforming vector elements, such that the
beam pattern varies over time. Hence, we define Eq. (30) as the average beam pattern.

3. NUMERICAL RESULTS

In this section, the presented models of SINR, beamforming gain, and beam pattern with phase noise
variances are verified with simulations.

3.1. Simulation Setup

The earth station antenna (the main antenna) is a Ku-band Cassegrain parabolic antenna of 0.8m
diameter with a maximum gain of 38 dB. The auxiliary array, distributed around the main antenna, is a
uniform circular array (UCA) with N = 8 elements and 4m diameter. The auxiliary antenna elements
are identical. Each element is a low-gain antenna with a maximum gain of 7.7 dB and a 3 dB beamwidth
of 135 degrees in the azimuth plane. Figure 2 presents the main antenna and auxiliary array gains. The
maximum auxiliary gain is 13 dB, thus the low SNR regime is SNR≪ 25 dB. Since the main antenna
gain is larger than the auxiliary gain when azimuth is less than ±5 degrees, we only consider azimuth
angles ≥ 6 degrees in the simulations. The SOI is a QPSK modulated signal with a raised cosine filter of
roll-off factor of 0.35 and a span of 32 symbols. The jamming signals are band-limited white Gaussian
noises with the same bandwidth as the SOI. The other main simulation parameters are listed in Table 1.
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Figure 2. Main antenna and auxiliary array gain comparison.
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Table 1. Simulation parameters.

Frequency 12.5GHz

SOI Azimuth 0 degree

Interferer angles |θ| ≥ 6 degrees (sidelobe)

Number of interferers 1 ∼ 3

Auxiliary array size 8

SNR threshold 3 dB

Bandwidth 1MHz

Phase noise variance 1e-6∼ 1e-1 rad2

(a)

(b)

(c)

Figure 3. Average output SINR versus phase noise variance. (a) K = 1. (b) K = 2. (c) K = 3.
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Note that, in practice, the phase noise variance is around 1e-4∼ 1e-3 rad2 in Ku band. Taking
Norsat 1008XHBN LNB as an example, which is a popular commercial product that includes a down-
conversion circuit using a 10MHz external reference, and its phase noise level is −75 dBc/Hz@1 kHz,
−85 dBc/Hz@10 kHz, and −95 dBc/Hz@100 kHz. The phase noise variance is around 1.6e-3 rad2

(c.f. [24]). In our numerical simulations, we assume that the phase noise spectrum maintains the same
shape as the one given above but is adjusted in magnitude to achieve different levels of phase noise
variance. The phase noise impairments can be simulated using the phase noise function in MATLAB.

3.2. SINR Analysis

In this subsection, we compare the output SINR results calculated by Eq. (12) and Eq. (25) with
simulation results. We assume INR = 30dB and SNR = 10dB. Figure 3 presents the average output
SINR versus phase noise variance.

We can see that the error between analytical result of Eq. (12) and simulation results is marginal
across various phase noise variances and number of interferers, which confirms the effectiveness of the

(a)

(b)

(c)

Figure 4. Average beamforming gain versus phase noise variance. (a) K = 1. (b) K = 2. (c) K = 3.
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proposed model. The maximum error between analytical and simulation results across all simulated
conditions is around 0.4 dB, while SINR decreases monotonically with phase noise variance. Since the
INR is fixed at 30 dB, when phase noise variance is less than 1e-3, additive thermal noise has a greater
impact on SINR than phase noise. It is noteworthy that despite being based on a set of assumptions,
Eq. (25) still provides reliable approximations. However, it tends to underestimate the output SINR
when the phase noise variance is low and overestimate it when the variance is high. The error margin
reaches its minimum at around 1e-4, which is a typical value in practical applications.

3.3. Beamforming Gain Analysis

In this subsection, we analyze the beamforming gain performance using the mathematical models of
Eqs. (23) and (28), and compare with simulation results.

Figure 4 presents the average beamforming gain versus phase noise variance, obtained by Eq. (23)
and (28), as well as simulation results. We can see that the analytical results of Eq. (23) tightly
approach the simulation results across various phase noise variances and number of interferers. It is
also interesting to observe that Eq. (28) can also well approximate Eq. (23) as well as the simulation
results, although it is derived upon a number of assumptions. Since Eq. (28) is simple and only related
to phase noise variance, it can be used for coarse analysis of the system performance.

1 1

1

(a) (b)

(c)

Figure 5. Average beamforming gain versus SNR. (a) K = 1. (b) K = 2. (c) K = 3.
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Figure 6. Average beamforming gain versus number of interferers.

Figure 5 presents the average beamforming gain versus SNR for phase noise variances equal to
1e-6, 1e-3, and 1e-1. First, the analytical results provided by Eq. (23) are accurate as evidenced by the
alignment of the curves with the simulation results. Second, the approximated formula Eq. (28) also
well reflects the beamforming gain performance, though the performance is underestimated by a few
decibels. Note that, when SNR is low, say less than 5 dB, no beamforming gain can be realized since
the SNR is too low; when SNR is larger than around 25 dB, which violates the low SNR assumption,
the signal cancellation effect dominates especially when the phase noise variance is small. Therefore,
for these two cases, the errors of Eq. (28) are relatively large.

Figure 6 presents the average beamforming gain versus the number of interferers for various phase
noise variances and SNRs. We see that the beamforming gain decreases with the number of interferers.
When SNR is low (Figure 6(a)), the curve of Eq. (28) aligns with the simulation results and analytical
results of Eq. (23), revealing an accurate approximation. When SNR is high (Figure 6(b)), the effect
of SNR is more evident, and the approximation of Eq. (28) is less accurate. Then, the performance
predicted by Eq. (28) will become more conservative when the number of interferers increases. When a
small number of interferers is concerned, Eq. (28) is still a good performance predictor.

3.4. Beam Pattern Analysis

In this subsection, we compare beam null depth results calculated with traditional beam pattern formula
(Eq. (29)) and the proposed average beam pattern formula (Eq. (30)). We assume INR = 30 dB and
K = 1. The interferer angle is 30 degrees, for which the main antenna gain is 3.4 dB. The beamforming
vector is calculated using Eq. (4).

Figure 7 presents an example of the average beam pattern when phase noise variance is 1e-3. We
see that the null depth of the average beam pattern at the interferer angle is −25.8 dB, which is much
higher than the traditional beam pattern null depth −70.9 dB. According to the null depth of averaged
beam pattern, the beamforming gain is around 29.2 dB (3.4 + 25.8), which is in accordance with the
results in the last subsection. The traditional formula significantly overestimates the performance.

Figure 8 presents the null depths of traditional and average beam patterns for various phase nose
variances. As we can see, the null depth of traditional beam pattern is much lower, while the quantity
does not match the beamforming gain obtained in the former subsections. Instead, the null depth of the
average beam pattern is proportional to the phase noise variance, coinciding with the beamforming gain.
Hence, we suggest using the proposed average beam pattern for performance analysis when distributed
PLLs are used.
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Figure 7. An example of average beam pattern.

Figure 8. Null depth versus phase noise variance.

4. CONCLUSIONS

This paper presents mathematical models for analyzing the impact of phase noise on the performance
of SLC system with DAA and distributed PLLs. Exact and approximate formulas have been derived to
calculate beamforming output SINR and beamforming gain. Our findings show that the beamforming
gain is inversely proportional to both the phase noise variance and number of interferers. We have
proposed an average beam pattern formula that resolves the inconsistency problem between beam null
depth and beamforming gain of traditional formulas in the presence of phase noise. The theoretical
findings have been validated through simulations.

APPENDIX A.

To make the derivations tractable, we assume that the array vectors of the interferers are mutually
orthogonal. Also considering the assumptions in Section 2.3, we can get

Rxd ≈ AcPgH
c e

−σ2
φ = Āc

[
pk ∥ac,k∥2

]
K
gH
c (A1)

Rxx ≈ AcPA
H
c + pnIN = Āc

[
pk ∥ac,k∥2 + pn

]
K
ĀH

c + pnUNUH
N
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where Āc = [ac,k/∥ac,k∥], UN is orthogonal to Āc. The beamforming vector is then approximated as

w ≈ Āc

[
pk ∥ac,k∥

pk ∥ac,k∥2 + pn

]
K

gH
c (A2)

We can further derive

∥w∥2 ≈
∑
k

p2k ∥ac,k∥
2 |gc,k|2(

pk ∥ac,k∥2 + pn

)2 ≈
∑
k

|gc,k|2

∥ac,k∥2
(A3)

where the second approximation is due to pk∥ac,k∥2 ≫ pn. From Eq. (25) and substituting with Eq. (A3),
we derive

wH
optac,ka

H
c,k ⊙ Φ̂wopt = σ2

φ

∑
n

|wopt,n|2 |ac,k,n|2 ≤ σ2
φ ∥wopt∥2 ∥ac,k∥2

≈ σ2
φ

∑
k

|gc,k|2

∥ac,k∥2
· ∥ac,k∥2 ≈ σ2

φ

∑
k

|gc,k|2 (A4)

To simplify the analysis, we consider the transmission powers of the interferers are equal, therefore,∑
k

pk

(
|gc,k|2 σ2

φ +wH
optac,ka

H
c,k ⊙ Φ̂wopt

)
≈ σ2

φ

∑
k

pk |gc,k|2 +
∑
k

(
σ2
φ

∑
k

pk |gc,k|2
)

= σ2
φ (K + 1)

∑
k

pk |gc,k|2. (A5)

This explains the approximation of Eq. (25).
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