Vol. 100

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-01-18

Ultra-Wideband Featuring Enhanced Delay and Sum Algorithm and Oriented for Detecting Early Stage Breast Cancer

By Mohammed Sadoon Hathal, Suhair S. Salih, and Alaa H. Hasan
Progress In Electromagnetics Research M, Vol. 100, 141-150, 2021
doi:10.2528/PIERM20012804

Abstract

In this study, we present the experimental results of ultra-wideband (UWB) imaging oriented for detecting small malignant breast tumors at an early stage. The technique is based on radar sensing, whereby tissues are differentiated based on the dielectric contrast between the disease and its surrounding healthy tissues. The image reconstruction algorithm referred to herein as the enhanced version of delay and sum (EDAS) algorithm is used to identify the malignant tissue in a cluttered environment and noisy data. The methods and procedures are tested using MRI-derived breast phantoms, and the results are compared with images obtained from classical DAS variant. Incorporating a new filtering technique and multiplication procedure, the proposed algorithm is effective in reducing the clutter and producing better images. Overall, the methods and procedures registered a signal-to-clutter ratio (SCR) value of 1.54 dB when imaging the most challenging example involving the heterogeneously dense model in 8-antenna geometry. The SCR is slightly increased to 3.12 dB when the number of sensors is increased to 16.

Citation


Mohammed Sadoon Hathal, Suhair S. Salih, and Alaa H. Hasan, "Ultra-Wideband Featuring Enhanced Delay and Sum Algorithm and Oriented for Detecting Early Stage Breast Cancer," Progress In Electromagnetics Research M, Vol. 100, 141-150, 2021.
doi:10.2528/PIERM20012804
http://jpier.org/PIERM/pier.php?paper=20012804

References


    1. Hagness, S. C., A. Taflove, and J. E. Bridges, "Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Fixed-focus and antenna-array sensors," IEEE Trans. Biomed. Eng., Vol. 45, No. 12, 1470-1479, 1998.
    doi:10.1109/10.730440

    2. Moosazadeh, M., S. Kharkovsky, J. T. Case, and B. Samali, "UWB antipodal Vivaldi antenna for microwave imaging of construction materials and structures," Microwave and Optical Technology Letters, Vol. 59, No. 6, 1259-1264, 2017.
    doi:10.1002/mop.30509

    3. Moosazadeh, M., S. Kharkovsky, Z. Esmati, and B. Samali, "UWB elliptically-tapered antipodal Vivaldi antenna for microwave imaging applications," IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), 102-105, 2016.
    doi:10.1109/APWC.2016.7738131

    4. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Trans. Med. Imag., Vol. 28, No. 7, 969-981, 2009.
    doi:10.1109/TMI.2008.2008959

    5. Lazebnik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, and T. M. Breslin, "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, 6093-6115, 2007.
    doi:10.1088/0031-9155/52/20/002

    6. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 3, 130-132, 2001.
    doi:10.1109/7260.915627

    7. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
    doi:10.1109/TBME.2008.919716

    8. Yang, F. and A. S. Mohan, "Breast cancer detection: Comparison of data-dependent and data-independent approaches," 2010 Asia-Pacific Microwave Conference Proceedings (APMC), 271-274, IEEE, 2010.

    9. Byrne, D., M. O'Halloran, M. Glavin, and E. Jones, "Data independent radar beamforming algorithms for breast cancer detection," Progress In Electromagnetics Research, Vol. 107, 331-348, 2010.
    doi:10.2528/PIER10061001

    10. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, 2006.
    doi:10.1109/TBME.2006.878058

    11. Li, J., P. Stoica, and Z.Wang, "On robust Capon beamforming and diagonal loading," IEEE Trans. Signal Proc., Vol. 51, No. 7, 1702-1715, 2003.
    doi:10.1109/TSP.2003.812831

    12. Nilavalan, R., A. Gbedemah, I. Craddock, X. Li, and S. C. Hagness, "Numerical investigation of breast tumour detection using multi-static radar," Electron. Lett., Vol. 39, 1787-1789, 2003.
    doi:10.1049/el:20031183

    13. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Trans. Antennas Propag., Vol. 51, No. 8, 1690-1705, 2003.
    doi:10.1109/TAP.2003.815446

    14. Lim, H. B., N. T. T. Nhung, E. P. Li, and N. D. Thang, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, 2008.
    doi:10.1109/TBME.2008.919716

    15. Klemm, M., J. Leendertz, D. Gibbins, I. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based breast cancer detection: Imaging in inhomogeneous breast phantoms," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1349-1352, 2009.
    doi:10.1109/LAWP.2009.2036748

    16. O'Halloran, M., M. Glavin, and E. Jones, "Channel-ranked beamformer for the early detection of breast cancer," Progress In Electromagnetics Research, Vol. 103, 153-168, 2010.
    doi:10.2528/PIER10030902

    17. Porter, E., J. Fakhoury, R. Oprisor, M. Coates, and M. Popovic, "Improved tissue phantoms for experimental validation of microwave breast cancer detection," Proc. of the Fourth European Conf. on Antennas and Propagation, 1-5, Barcelona, Spain, 2010.

    18. Hollman, K., K. Rigby, and M. O'Donnell, "Coherence factor of speckle from a multi-row probe," Proc. IEEE Ultrasonic Symp., 1257-1260, Caesars, Tahoe, NV, 1999.

    19. Wang, S. L., C. H. Chang, H. C. Yang, Y. H. Chou, and P. C. Li, "Performance evaluation of coherence-based adaptive imaging using clinical breast data," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Vol. 54, No. 8, 1669-1679, 2007.
    doi:10.1109/TUFFC.2007.438

    20. Campbell, A. and D. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 37, No. 1, 193, 2000.
    doi:10.1088/0031-9155/37/1/014

    21. Zastrow, E., S. K. Davis, M. Lazebnik, F. Kelcz, B. D. Van Veen, and S. C. Hagness, "Development of anatomically realistic numerical breast phantoms with accurate dielectric properties for modeling microwave interactions with the human breast," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2792-2800, 2008.
    doi:10.1109/TBME.2008.2002130

    22. Leendertz, J., A. Preece, R. Nilavalan, I. Craddock, and R. Benjamin, "A liquid phantom medium for microwave breast imaging," 6th International Congress of the European Bioelectromagnetics Association, Budapest, Hungary, 2003.

    23. Sill, J. M. and E. C. Fear, "Tissue sensing adaptive radar for breast cancer detection-experimental investigation of simple tumor models," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 11, 3312-3319, 2005.
    doi:10.1109/TMTT.2005.857330

    24. Zanoon, T. and M. Abdullah, "Early stage breast cancer detection by means of time-domain ultra-wide band sensing," Meas. Sci. Technol., Vol. 22, 114016, 2011.
    doi:10.1088/0957-0233/22/11/114016

    25. Hahn, C. and S. Noghanian, "Heterogeneous breast phantom development for microwave imaging using regression models," Journal Biomed. Imag., Vol. 2012, 6, 2012.

    26. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, 4245-4258, 2005.
    doi:10.1088/0031-9155/50/18/001

    27. Zanoon, T. F., M. S. Hathal, and M. Abdullah, "Microwave imaging at resolution and super-resolution with ultra-wide band sensors," 2012 IEEE Int. Conf. Imaging Systems and Techniques (IST), 538-543, IEEE, 2012.
    doi:10.1109/IST.2012.6295578