Based on order one-loop effective Lagrangian derived from the 2-point photon vertex in quantum electrodynamics, we obtain a quantum modified Maxwell equations, and the classical expression of retarded potential is consequently modified by these equations. The results indicate that, due to the time-space non-locality of vacuum polarization, the vacuum polarization current is delayed relative to the field variation and induces a series of additional retarded potentials except for the classical part of retarded potential. Particularly, compared to the classical potential, these additional potentials are further retarded. Because the retard potential is the base of theory of electromagnetic radiation, the results of this work are of great value to the studies of quantum effect in ultra-intense electromagnetic radiation.
2. Schwinger, J., "On Gauge invariance and vacuum polarization," Phys. Rev., Vol. 82, No. 5, 664-679, 1951.
doi:10.1103/PhysRev.82.664
3. Heisenberg, W. and H. Euler, "Folgerungen aus der diracschen theorie des positrons," Z. Für Phys., Vol. 98, No. 11-12, 714-732, 1936.
doi:10.1007/BF01343663
4. King, B. and A. D. Piazza, "Investigating the QED vacuum with ultra-intense laser fields," Eur. Phys. J. Spec. Top., Vol. 223, No. 6, 1063-1068, 2014.
doi:10.1140/epjst/e2014-02157-3
5. King, B. and T. Heinzl, "Measuring vacuum polarization with high-power lasers," High Power Laser Sci. Eng., Vol. 4, e5, 2016.
doi:10.1017/hpl.2016.1
6. Dittrich, W. and H. Gies, Probing the Quantum Vacuum, Springer, Berlin, 2000.
7. Tommasini, D., D. Novoa, and L. Roso, "Quantum vacuum polarization searches with high power lasers below the pair production regime," Progress in Ultrafast Intense Laser Science, 137-153, 2014.
doi:10.1007/978-3-319-00521-8_9
8. Shearer, J. W., J. Garrison, J. Wong, and J. E. Swain, "Pair production by relativistic electrons from an intense laser focus," Phys. Rev. A, Vol. 8, No. 3, 1582-1588, 1973.
doi:10.1103/PhysRevA.8.1582
9. Bulanov, S. S., "Pair production by a circularly polarized electromagnetic wave in a plasma," Phys. Rev. E, Vol. 69, No. 3, 036408, 2004.
doi:10.1103/PhysRevE.69.036408
10. Di Piazza, A., K. Z. Hatsagortsyan, and C. H. Keitel, "Nonperturbative vacuum-polarization effects in proton-laser collisions," Phys. Rev. Lett., Vol. 100, No. 1, 010403, 2008.
doi:10.1103/PhysRevLett.100.010403
11. Landau, L. D. and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, Oxford, 2013.
12. Itzykson, C. and J.-B. Zuber, Quantum Field Theory, Dover Publications, New York, 2006.
13. Dittrich, W. and M. Reuter, Effective Lagrangians in Quantum Electrodynamics, Springer-Verlag, Berlin, 1985.
doi:10.1007/3-540-15182-6
14. Pokorski, S., Gauge Field Theories, Cambridge University Press, Cambridge, 2000.
doi:10.1017/CBO9780511612343
15. Greiner, W. and J. Reinhardt, Quantum Electrodynamics, Springer Science & Business Media, Berlin, 2013.