Vol. 32
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2013-07-15
A Duality Between Metamaterials and Conventional Materials in Multilayered Anisotropic Planar Structures
By
Progress In Electromagnetics Research M, Vol. 32, 13-25, 2013
Abstract
Consider a plane wave incident on a multilayered planar anisotropic structure composed of conventional materials and metamaterials and surround by two half-spaces. In this paper, we aim to prove three theorems which indicate a kind of duality in these structures. Assume an arbitrarily polarized plane wave obliquely incident on the structures. Theorem 1: Assume that an arbitrarily polarized plane wave is obliquely incident on the structure. Now each layer is filled with by dual media according to the interchanges DPS ↔ DNG and ENG ↔ MNG. Then, the reflection (R) and transmission (T) coefficients of the structure become the complex conjugates of their counterparts. Consequently, the reflected power and transmitted power from the structure are the same for the two dual cases of anisotropic media. Theorem 2: If the interchanges DPS ↔ DNG and ENG ↔ MNG are made in all the layers except in the half spaces on the two sides of the multilayer structure (which is more realizable), then the reflection coefficients become complex conjugates and the reflected power remains the same. Theorem 3: If the structure is backed by a perfect electric conductor and the media interchanges DPS ↔ DNG and ENG ↔ MNG are made in the layers, then the reflection coefficients of the two dual structures become complex conjugates of each other, and the reflected powers are equal. Independent of wave frequency, the number of layers, their thickness, and the type of polarization, these theorems hold true in case of any change in any of these conditions. In the last section, some examples are provided to verify the validity of the proposed theorems.
Citation
Maryam Heidary, Ali Abdolali, Mohammad Mahdi Salary, and Hossein Mirzaei, "A Duality Between Metamaterials and Conventional Materials in Multilayered Anisotropic Planar Structures," Progress In Electromagnetics Research M, Vol. 32, 13-25, 2013.
doi:10.2528/PIERM13041107
References

1. Teitler, S. and B. W. Henvis, "Refraction in stratified anisotropic media," J. Opt. Soc. Am., Vol. 60, 830-834, Jun. 1970.
doi:10.1364/JOSA.60.000830

2. Berreman, D. W., "Optic in stratified and anisotropic media: 4 x 4 matrix formulation," J. Opt. Soc. Am., Vol. 62, 502-510, Apr. 1972.
doi:10.1364/JOSA.62.000502

3. Barkovskii, L. M. and G. N. Borzdov, "Electromagnetic waves in absorbing plane-layered anisotropic and gyrotropic media," J. Appl. Spectrosc., Vol. 23, 985-991, Sept. 1976.
doi:10.1007/BF00608828

4. Barkovskii, L. M. and G. N. Borzdov, "Reflection of electromagnetic waves from layered continuously inhomogeneous anisotropic media: Multiple reflection method," Opt. Spectrosc. (USSR), Vol. 45, 701-705, Oct. 1978.

5. Graglia, R. D. and P. L. E. Uslenghi, "Electromagnetic scattering from anisotropic materials, part I: General theory," IEEE Trans. Antennas Propagat., Vol. 32, 867-869, Aug. 1984.
doi:10.1109/TAP.1984.1143422

6. Morgan, M. A., et al. "Electromagnetic scattering by stratified inhomogeneous anisotropic media," IEEE Trans. Antennas Propagat., Vol. 35, 191-198, Feb. 1987.
doi:10.1109/TAP.1987.1144069

7. Graglia, R. D., et al. "Reflection and transmission for planar structures of bianisotropic media," Electromagnetics, Vol. 11, 193-208, 1991.
doi:10.1080/02726349108908273

8. Titchener, J. B. and J. R. Willis, "The reflection of electromagnetic waves from stratified anisotropic media," IEEE Trans. Antennas Propagat., Vol. 39, 35-40, Jan. 1991.
doi:10.1109/8.64432

9. Tsalamengas, J. L., "Interaction of electromagnetic waves with general bianisotropic slabs," IEEE Trans. Microwave Therory Tech., Vol. 40, 1870-1879, Oct. 1992.
doi:10.1109/22.159623

10. Lindell, I. V., et al. "Vector Transmission-line and circuit theory for bi-isotropic layered structures," Journal of Electromagnetic Waves and Applications, Vol. 7, 147-173, 1993.
doi:10.1163/156939393X01119

11. Yang, H. D., "A spectral recursive transformation method for electromagnetic waves in generalized anisotropic layered media," IEEE Trans. Antennas Propagat., Vol. 45, 520-527, Mar. 1997.
doi:10.1109/8.558667

12. Ning, J. and E. L. Tan, "Hybrid matrix method for stable analysis of electromagnetic waves in stratified bianisotropic media," IEEE Microwave Wireless Comp. Lett., Vol. 18, 653-656, Oct. 2008.
doi:10.1109/LMWC.2008.2003446

13. Kong, J. A., "Theory of Electromagnetic Waves," EMW Publishing, 2005.

14. Oraizi, H. and A. Abdolali, "Design and optimization of planar multilayer antireflection meta-material coatings at Ku band under circularly polarized oblique plane wave incidence," Progress In Electromagnetics Research C, Vol. 3, 1-18, 2008.
doi:10.2528/PIERC08021906

15. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, tat. Phys. Plasmas Fluids Relat., Vol. 64, No. 5, 617-625, 2001.

16. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

17. Oraizi, H. and A. Abdolali, "Mathematical formulation for zero reflection from multilayer metamaterial structures and their notable applications," IET Microwaves, Antennas & Propagation, Vol. 3, No. 6, 987-996, Sep. 2009.
doi:10.1049/iet-map.2008.0281

18. Oraizi, H. and A. Abdolali, "Several theorems for reflection and transmission coefficients of plane wave incidence on planar multilayer metamaterial structures," IET Microwaves, Antennas & Propagation Journal, Vol. 4, No. 11, 1870-1879, Nov. 2010.
doi:10.1049/iet-map.2009.0468

19. Su, H. L. and K. H. Lin, "Design of an anisotropic quarter-wave polariser without insertion loss caused by mismatch," IEE Proc .--- Microw. Antennas Propag., Vol. 153, No. 3, 253-258, Jun. 2006.
doi:10.1049/ip-map:20045144

20. Yang, H. D., "A spectral recursive transformation method for electromagnetic waves in generalized anisotropic layered media," IEEE Trans. Antennas Propagat., Vol. 45, 520-527, Mar. 1997.
doi:10.1109/8.558667

21. Ning, J. and E. L. Tan, "Hybrid matrix method for stable analysis of electromagnetic waves in stratified bianisotropic media," IEEE Microwave Wireless Comp. Lett., Vol. 18, 653-656, Oct. 2008.