Vol. 97

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-04-07

Comparative Analysis of Electromagnetic Performance of Magnetic Gear

By Xiaocun Huang, Yuxiu Guo, and Libing Jing
Progress In Electromagnetics Research Letters, Vol. 97, 69-76, 2021
doi:10.2528/PIERL21031501

Abstract

In order to investigate the influence of different magnetization modes on the electromagnetic performance of magnetic gear, four models of magnetic gear with different magnetization modes are established. The finite element method is used to simulate the four models and compare their performances. The distribution of magnetic flux lines, air gap magnetic field, harmonic distribution, static torque and dynamic torque are calculated, respectively. The simulation results show that the coaxial magnet gear with Halbach array has larger air gap flux density amplitude, smaller air gap harmonic content and higher output torque than the other three kinds of magnetic gears.

Citation


Xiaocun Huang, Yuxiu Guo, and Libing Jing, "Comparative Analysis of Electromagnetic Performance of Magnetic Gear," Progress In Electromagnetics Research Letters, Vol. 97, 69-76, 2021.
doi:10.2528/PIERL21031501
http://jpier.org/PIERL/pier.php?paper=21031501

References


    1. Chen, M., K. T. Chau, W. L. Li, C. Liu, and C. Qiu, "Design and analysis of a new magnetic gear with multiple transmission ratios," IEEE Trans. Appl. Supercond., Vol. 3, No. 24, 1-4, 2014.

    2. Jing, L. B., Z. H. Huang, J. L. Chen, and R. H. Qu, "Design, analysis and realization of a hybrid-excited magnetic gear during overload," IEEE Trans. Ind. Appl., Vol. 56, No. 5, 4812-4819, 2020.
    doi:10.1109/TIA.2020.3004425

    3. Liu, C. T., K. Y. Hung, and C. C. Hwang, "Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines," IEEE Trans. Magn., Vol. 52, No. 7, 2016.

    4. Park, C. B. and G. Jeong, "Design and analysis of magnetic-geared permanent magnet synchronous motor for driving electric vehicles," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 11-14, 2017.

    5. Fang, Y. and T. Zhang, "Vibro acoustic characterization of a permanent magnet synchronous motor power train for electric vehicles," IEEE Trans. Energy Convers., Vol. 33, No. 1, 272-280, 2017.
    doi:10.1109/TEC.2017.2737483

    6. Li, K., S. Modaresahmadi, W. Williams, J. Bird, J. Wright, and D. Barnett, "Electromagnetic analysis and experimental testing of a flux focusing wind turbine magnetic gear box," IEEE Trans. Energy Convers., Vol. 34, No. 3, 1512-1521, 2019.
    doi:10.1109/TEC.2019.2911966

    7. Desvaux, M., B. Multon, H. B. Ahmed, S. Sire, A. Fasquelle, and D. Laloy, "Gear ratio optimization of a full magnetic indirect drive chain for wind turbine applications," 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), 11-13, 2017.

    8. Golovanov, D., M. Galea, and C. Gerada, "High specific torque motor for propulsion system of aircraft," International Conference on Electrical Systems for Aircraft, 2-4, 2016.

    9. Bruzzese, C., E. Ruggeri, M. Rafiei, D. Zito, T. Mazzuca, and G. Lipardi, "Mechanical arrangements onboard ship of innovative permanent magnet linear actuators for steering gear," 2017 International Symposium on Power Electronics, 19-21, 2017.

    10. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, 2001.
    doi:10.1109/20.951324

    11. Rasmussen, P. O., T. O. Andersen, and F. T. Jorgensen, "Development of a high-performance magnetic gear," IEEE Trans. Ind. Appl., Vol. 41, No. 3, 764-770, 2005.
    doi:10.1109/TIA.2005.847319

    12. Acharya, V. M., J. Z. Bird, and M. Calvin, "A flux focusing axial magnetic gear," IEEE Trans. Magn., Vol. 49, No. 7, 4092-4095, 2013.
    doi:10.1109/TMAG.2013.2248703

    13. Rens, J., K. Atallah, S. D. Calverley, and D. Howe, "A novel magnetic harmonic gear," IEEE Trans. Ind. Appl., Vol. 46, No. 1, 206-212, 2007.
    doi:10.1109/TIA.2009.2036507

    14. Dianati, B., H. Heydari, and S. A. Afsari, "Analytical computation of air-gap magnetic field in a viable superconductive magnetic gear," IEEE Trans. Magn., Vol. 52, No. 2, 1-12, 2016.
    doi:10.1109/TMAG.2016.2515771

    15. Kim, M., S. Lee, and E. Park, "A study on pole-piece design of magnet gear for improved power density and torque ripple," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 2497-2500, Jeju, Korea, 2018.

    16. Deng, Z., I. Nas, and M. J. Dapino, "Torque analysis in coaxial magnetic gears considering nonlinear magnetic properties and spatial harmonics," IEEE Trans. Magn., Vol. 55, No. 2, 1-11, 2019.
    doi:10.1109/TMAG.2018.2885729

    17. Praslicka, B., M. C. Gardner, and M. Johnson, "Review and analysis of coaxial magnetic gear pole pair count selection effects," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021.
    doi:10.1109/JESTPE.2021.3053544