Vol. 97
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2021-04-07
Comparative Analysis of Electromagnetic Performance of Magnetic Gear
By
Progress In Electromagnetics Research Letters, Vol. 97, 69-76, 2021
Abstract
In order to investigate the influence of different magnetization modes on the electromagnetic performance of magnetic gear, four models of magnetic gear with different magnetization modes are established. The finite element method is used to simulate the four models and compare their performances. The distribution of magnetic flux lines, air gap magnetic field, harmonic distribution, static torque and dynamic torque are calculated, respectively. The simulation results show that the coaxial magnet gear with Halbach array has larger air gap flux density amplitude, smaller air gap harmonic content and higher output torque than the other three kinds of magnetic gears.
Citation
Xiaocun Huang, Yuxiu Guo, and Libing Jing, "Comparative Analysis of Electromagnetic Performance of Magnetic Gear," Progress In Electromagnetics Research Letters, Vol. 97, 69-76, 2021.
doi:10.2528/PIERL21031501
References

1. Chen, M., K. T. Chau, W. L. Li, C. Liu, and C. Qiu, "Design and analysis of a new magnetic gear with multiple transmission ratios," IEEE Trans. Appl. Supercond., Vol. 3, No. 24, 1-4, 2014.

2. Jing, L. B., Z. H. Huang, J. L. Chen, and R. H. Qu, "Design, analysis and realization of a hybrid-excited magnetic gear during overload," IEEE Trans. Ind. Appl., Vol. 56, No. 5, 4812-4819, 2020.
doi:10.1109/TIA.2020.3004425

3. Liu, C. T., K. Y. Hung, and C. C. Hwang, "Developments of an efficient analytical scheme for optimal composition designs of tubular linear magnetic-geared machines," IEEE Trans. Magn., Vol. 52, No. 7, 2016.

4. Park, C. B. and G. Jeong, "Design and analysis of magnetic-geared permanent magnet synchronous motor for driving electric vehicles," 2017 20th International Conference on Electrical Machines and Systems (ICEMS), 11-14, 2017.

5. Fang, Y. and T. Zhang, "Vibro acoustic characterization of a permanent magnet synchronous motor power train for electric vehicles," IEEE Trans. Energy Convers., Vol. 33, No. 1, 272-280, 2017.
doi:10.1109/TEC.2017.2737483

6. Li, K., S. Modaresahmadi, W. Williams, J. Bird, J. Wright, and D. Barnett, "Electromagnetic analysis and experimental testing of a flux focusing wind turbine magnetic gear box," IEEE Trans. Energy Convers., Vol. 34, No. 3, 1512-1521, 2019.
doi:10.1109/TEC.2019.2911966

7. Desvaux, M., B. Multon, H. B. Ahmed, S. Sire, A. Fasquelle, and D. Laloy, "Gear ratio optimization of a full magnetic indirect drive chain for wind turbine applications," 2017 Twelfth International Conference on Ecological Vehicles and Renewable Energies (EVER), 11-13, 2017.

8. Golovanov, D., M. Galea, and C. Gerada, "High specific torque motor for propulsion system of aircraft," International Conference on Electrical Systems for Aircraft, 2-4, 2016.

9. Bruzzese, C., E. Ruggeri, M. Rafiei, D. Zito, T. Mazzuca, and G. Lipardi, "Mechanical arrangements onboard ship of innovative permanent magnet linear actuators for steering gear," 2017 International Symposium on Power Electronics, 19-21, 2017.

10. Atallah, K. and D. Howe, "A novel high-performance magnetic gear," IEEE Trans. Magn., Vol. 37, No. 4, 2844-2846, 2001.
doi:10.1109/20.951324

11. Rasmussen, P. O., T. O. Andersen, and F. T. Jorgensen, "Development of a high-performance magnetic gear," IEEE Trans. Ind. Appl., Vol. 41, No. 3, 764-770, 2005.
doi:10.1109/TIA.2005.847319

12. Acharya, V. M., J. Z. Bird, and M. Calvin, "A flux focusing axial magnetic gear," IEEE Trans. Magn., Vol. 49, No. 7, 4092-4095, 2013.
doi:10.1109/TMAG.2013.2248703

13. Rens, J., K. Atallah, S. D. Calverley, and D. Howe, "A novel magnetic harmonic gear," IEEE Trans. Ind. Appl., Vol. 46, No. 1, 206-212, 2007.
doi:10.1109/TIA.2009.2036507

14. Dianati, B., H. Heydari, and S. A. Afsari, "Analytical computation of air-gap magnetic field in a viable superconductive magnetic gear," IEEE Trans. Magn., Vol. 52, No. 2, 1-12, 2016.
doi:10.1109/TMAG.2016.2515771

15. Kim, M., S. Lee, and E. Park, "A study on pole-piece design of magnet gear for improved power density and torque ripple," 2018 21st International Conference on Electrical Machines and Systems (ICEMS), 2497-2500, Jeju, Korea, 2018.

16. Deng, Z., I. Nas, and M. J. Dapino, "Torque analysis in coaxial magnetic gears considering nonlinear magnetic properties and spatial harmonics," IEEE Trans. Magn., Vol. 55, No. 2, 1-11, 2019.
doi:10.1109/TMAG.2018.2885729

17. Praslicka, B., M. C. Gardner, and M. Johnson, "Review and analysis of coaxial magnetic gear pole pair count selection effects," IEEE Journal of Emerging and Selected Topics in Power Electronics, 2021.
doi:10.1109/JESTPE.2021.3053544