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Comparative Analysis of Electromagnetic Performance
of Magnetic Gear
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Abstract—In order to investigate the influence of different magnetization modes on the electromagnetic
performance of magnetic gear, four models of magnetic gear with different magnetization modes
are established. The finite element method is used to simulate the four models and compare their
performances. The distribution of magnetic flux lines, air gap magnetic field, harmonic distribution,
static torque, and dynamic torque are calculated, respectively. The simulation results show that the
coaxial magnet gear with Halbach array has larger air gap flux density amplitude, smaller air gap
harmonic content, and higher output torque than the other three kinds of magnetic gears.

1. INTRODUCTION

With the progress of industrial technology and the development of new energy technology, the stable
operation of electromechanical system has always been a very important issue. Mechanical gear has
always been an important part of the transmission mechanism. However, mechanical gear has inherent
defects, such as being easy to break teeth, needing frequent maintenance, and noise. So it is necessary
to find a better gear to replace it. Magnetic gear is an electromagnetic device driven by non-contact
magnetic force, which has the advantages of low noise, low vibration, maintenance free, and inherent
overload protection [1–3]. At present, magnetic gears are used in many low-speed and high torque
situations, especially in combination with permanent magnet motors, such as electric vehicles [4, 5],
wind power generators [6, 7], and marine electric propulsion [8, 9].

The concept of magnetic gear can be traced back to 1913 and was put forward by B. Brukwici.
However, scholars did not pay attention to this aspect, mainly due to the poor performance of magnetic
materials at that time, low transmission efficiency, and low torque density. In [10], Atallah and Howe
proposed the concentric magnetic gear topology for the first time, that is, the inner and outer rotors
and the magnetic ring have a common center. The special structure is shown in Fig. 1. The torque
density of the magnetic gear with this structure can reach 100 kN·m/m3. Linear magnetic gear [11]
and concentrated magnetic gear [12] have come out one after another. In 2007, a magnetic harmonic
gear was proposed by a British professor, whose transmission ratio can be as high as 20 : 1 [13].
In [14], a superconducting material is proposed to replace the iron core on the magnetic ring, which
greatly enhances the air gap magnetic flux density and improves the output torque of the magnetic
gear. A magnetic gear with pole shape is proposed in [15]. The electromagnetic characteristics of the
magnetic gear are analyzed and calculated by box-Behnken method, and the torque ripple is reduced
by 1.27%. In [16], a systematic torque surface method is proposed, which decouples the average torque
and torque ripple in the magnetic gear. The harmonic and torque pulsation in the average torque
are derived, and the results are in good agreement with the finite element calculation results. In [17],
the authors summarized the influence of polar logarithm on gear performance, introduced the new
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pulsation coefficient, and explained why the design of non-integer gear ratio is often smaller than
that of integer gear ratio. Although the output torque of magnetic gears with spoke structure and
Halbach array structure is higher than that of conventional magnetic gears, the quantitative performance
comparison of these structures is less. Therefore, it is necessary to study the magnetic gears with
different magnetization directions.

In this paper, four kinds of magnetic gears with different magnetization modes are analyzed and
compared. The four models are conventional radial magnetization, inner rotor spoke, outer rotor spoke,
and Halbach array. The simulation software ANSYS is used to model and calculate the magnetic gear.
The distribution of magnetic flux lines, the distribution of air gap magnetic field, and the harmonic
content are compared, respectively, and the torques of four kinds of magnetic gears under static and
dynamic torque are compared. The results show that magnetic gear with Halbach array can provide
greater transmission torque.

2. BASIC THEORY AND MAGNETIC FIELD ANALYSIS

2.1. Basic Theory of MHG

As shown in Fig. 1, magnetic gear consists of the following 3 parts: inner rotor, outer rotor, stationary
steel segment. The permanent magnet is installed on the inner and outer rotors and is radially
magnetized. The inner rotor rotates at high speed and the outer rotor at low speed. The rotation
speed of the two rotors is in accordance with a certain proportion. The number of magnetic stationary
steel segments needs to meet the following relationship [11]:

ns = Pin + Pout (1)

where ns is the number of stationary steel segments, and Pin and Pout are the numbers of pole pairs of
the inner and outer rotors, respectively.

Figure 1. Conventional magnetic gear.

The inner rotor rotates at high speed and is connected with the input end, while the outer rotor
rotates at low speed and is connected with the load. The stationary steel segment in the middle mainly
plays the role of magnetic field modulation. The permanent magnet on the inner and outer rotors
modulates many fixed harmonic components through the effect of the stationary steel segment, which
affects the inner and outer air gap magnetic fields and makes the inner and outer rotors rotate. The
magnetic field excited by the sub permanent magnet can effectively couple and generate the transfer
torque. The harmonic components in the air gap have specific space pole pairs and rotational speeds,
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and the angular velocities of the harmonic components in the inner and outer air gaps are expressed as:

Ωm,k =
mp

mp+ kns
Ωr +

kns

mp+ kns
Ωs (2)

where m = 1, 3, 5, ...,∞; k = 1, 2, 3, ...,∞; p is the number of pole-pairs on permanent magnet rotor, ns

the number of stationary steel segment, Ωm,k the angular velocity of the space harmonic component,
Ωr the angular velocity of the inner and outer rotors, and Ωs the angular velocity of the stationary steel
segment.

For the transmission ratio of the magnetic gear, the stationary steel segment is usually fixed, and
the inner and outer rotors are rotated at a certain speed. Therefore, the transmission ratio of the
magnetic gear can be expressed as follows:

Gr =
Pout

Pin
(3)

2.2. Topological Structure

Figure 2 shows the topological structure of the four kinds of magnetic gears to be analyzed, and the
conventional radial magnetized magnetic gears are shown on the upper left. The upper right is the inner
rotor spoke structure; the lower left is the Halbach array structure; and the lower right is the outer rotor
spoke structure. They all have the same volume and the same number of permanent magnets. The
material of each kind of magnetic gear is the same, which is composed of the same silicon steel sheet
and permanent magnet. The inner rotor of each kind of magnetic gear has 4 pole pairs; the outer rotor
has 17 pole pairs; and the number of stator segments is 21. The length of the inner and outer air gaps
of the four kinds of magnetic gears is 1 mm, and the axial length is 40 mm. Their specific parameters
are listed in Table 1.

Figure 2. Four kinds of magnetic gears.

For the magnetic gear with Halbach array, each pole of the inner rotor is divided into four small
pieces with a magnetization angle of 45◦, and each pole of the outer rotor is divided into two small
pieces with a corresponding angle of 90◦.

3. MAGNETIC FIELD

In order to verify the electromagnetic characteristics of the four kinds of magnetic gears, four kinds
of magnetic gear models are established by Ansys software. Fig. 3 shows the distribution of magnetic
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(a) (b)

(c) (d)

Figure 3. Flux line distributions. (a) Conventional; (b) Inner rotor spoke; (c) Halbach array; (d)
Outer rotor spoke.

Table 1. Parameters of magnetic gear.

Parameters Values
Outer radius of stator yoke (mm) 107
Inner radius of stator yoke (mm) 97

Outer radius of low-speed rotor yoke (mm) 97
Inner radius of low-speed rotor yoke (mm) 87
Outer radius of the inner rotor yoke (mm) 70
Inner radius of the inner rotor yoke (mm) 60

Thickness of stationary steel segment (mm) 15
Thickness of the air gap (mm) 1
Pole pairs of the inner rotor 4
Pole pairs of the outer rotor 17
Remanence of NdFeB (T) 1.2

Relative permeability of NdFeB 1
Axial length (mm) 40

PMs material NdFeB
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Figure 4. Flux density waveforms. (a) Radial component in inner air gap; (b) Tangential component
in inner air gap; (c) Radial component in outer air gap; (d) Tangential component in outer air gap.

flux lines of four kinds of magnetic gear models. It can be seen that the magnetic flux lines of Halbach
array model have little circulation on the yoke side of rotor, while the magnetic flux at the air gap side
increases.

Figure 4 shows the radial and tangential magnetic flux density waveforms in the inner and outer
air gaps calculated by finite element analysis. It is obvious that the magnetic flux densities of these
four models are basically the same in waveform, so it is difficult to distinguish them graphically, so it is
necessary to analyze their harmonics.

Figure 5 shows the harmonic spectrum of the air gap flux density of four kinds of magnetic gears.
As can be seen from Fig. 5(a), there are basic effective working harmonics in the air gap of the

magnetic gear, and there are mainly 12th, 20th, 28th, 33th, 41th, and 46th harmonics in the conventional
radial magnetization, inner rotor spoke, and outer rotor spoke. However, in the air gap magnetic field
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Figure 5. Harmonic spectrum of flux densities. (a) Radial component in the air gap; (b) Tangential
component in inner air gap; (c) Radial component in outer air gap; (d) Tangential component in outer
air gap.

of magnetic gear with Halbach array, these harmonics are greatly weakened. In Fig. 5(b), the change
of harmonic spectrum of tangential flux density is relatively small. It can be seen from Fig. 5(c) and
Fig. 5(d) that the amplitude of the outer air gap flux density of the magnetic gear with Halbach array
is much larger than that of the other three kinds of flux density.

4. TORQUE

Static torque is one of the important properties of magnetic gear. Fig. 6 shows the variation of the
torque which is exerted on the inner rotor while keeping the outer rotor and the modulating steel
segment fixed. The inner rotor rotates with a phase angle ψi varying from 0◦ to 90◦.

It can be seen from Fig. 6 that the static torque waveforms of the four kinds of magnetic gears are
sinusoidal, and the transmission ratio of the inner and outer rotors of the same magnetic gear ratio is
4.25 : 1. Among them, the magnetic gear with the inner spoke rotor has the smallest torque, and the
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Figure 6. Static torque-angle curve.

torque of the outer rotor is 77.09 N·m. The magnetic gear with Halbach array can obtain the maximum
electromagnetic torque, and the maximum torque of the outer rotor is 168.72 N·m. The torque values
of the other two kinds of magnetic gears are between the two types.

In order to obtain the steady-state torque of the magnetic gear, the first step is to fix the modulating
steel segment. The inner rotor rotates clockwise, and the outer rotor rotates counterclockwise. The
ratio of their rotational speeds should conform to formula (3). Fig. 7 shows the steady-state torque
curves of four kinds of magnetic gears, and the torque fluctuation of each type is very small. It can
be seen that the output torques of magnetic gears with four different magnetization structures are
quite different. Among them, the torque value of the magnetic gear with Halbach array is the largest,
reaching 168.7 N·m, and there is no torque ripple. The torque value of magnetic gear with the inner
spoke structure is the smallest, which is 77.1 N·m. For the same volume of magnetic gear, it is obvious
that the magnetic gear with Halbach array will have greater torque density.
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Figure 7. Electromagnetic torque. (a) Inner rotor; (b) Outer rotor.
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5. CONCLUSION

In this paper, four kinds of magnetic gears with different magnetization structures are introduced, which
are the conventional radial magnetization, the inner rotor spoke, the outer rotor spoke, and the inner
and outer rotors are all Halbach array. The four kinds of magnetic gears have the same volume. By
comparing the distribution of magnetic flux lines, the air gap flux density and the torque, it is found
that the magnetic gear with Halbach array rotor structure has large torque and small torque ripple.
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