Vol. 24
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-06-06
An Efficient Inverse Scattering Algorithm and Its Application to Lossy Electric Transmission Line Synthesis
By
Progress In Electromagnetics Research Letters, Vol. 24, 77-90, 2011
Abstract
As studied by Jaulent in 1982, the inverse problem of lossy electric transmission lines is closely related to the inverse scattering of Zakharov-Shabat equations with two potential functions. Focusing on the numerical solution of this inverse scattering problem, we develop a fast one-shot algorithm based on the Gelfand-Levitan-Marchenko equations and on some differential equations derived from the Zakharov-Shabat equations. Compared to existing results, this new algorithm is computationally more efficient. It is then applied to the synthesis of non uniform lossy electric transmission lines.
Citation
Huaibin Tang, and Qinghua Zhang, "An Efficient Inverse Scattering Algorithm and Its Application to Lossy Electric Transmission Line Synthesis," Progress In Electromagnetics Research Letters, Vol. 24, 77-90, 2011.
doi:10.2528/PIERL11010706
References

1. Lin, C. J., C. C. Chiu, S. G. Hsu, and H. C. Liu, "A novel model extraction algorithm for reconstruction of coupled transmission lines in high-speed digital system," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 12, 1595-1609, 2005.
doi:10.1163/156939305775537393

2. Lundstedt, J. and M. NorgrenLin, "Comparison between frequency domain and time domain methods for parameter reconstruction on nonuniform dispersive transmission lines," Progress In Electromagnetics Research, Vol. 43, 1-37, 2003.
doi:10.2528/PIER03020301

3. Sheen, D. and D. Shepelsky, "Uniqueness in the simultaneous reconstruction of multiparameters of a transmission line," Progress In Electromagnetics Research, Vol. 21, 153-172, 1999.
doi:10.2528/PIER98072001

4. Bilotti, F., L. Vegni, and A. Toscano, "A new stripline high pass filter layout," Journal of Electromagnetic Waves and Applications, Vol. 14, No. 3, 423-439, 2000.
doi:10.1163/156939300X00932

5. Costanzo, S., "Synthesis of multi-step coplanar waveguide-to-microstrip transition," Progress In Electromagnetics Research, Vol. 113, 111-126, 2011.

6. Monti, G., R. De Paolis, and L. Tarricone, "Design of a 3-state reconfigurable CRLH transmission line based on mems switches," Progress In Electromagnetics Research, Vol. 95, 283-297, 2009.
doi:10.2528/PIER09071109

7. Mao, J. F., O. Wing, and F. Y. Chang, "Synthesis of coupled transmission lines," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, Vol. 44, No. 4, 327-337, 1997.
doi:10.1109/81.563622

8. Jaulent, M., "The inverse scattering problem for LCRG transmission lines," Journal of Mathematical Physics, Vol. 23, No. 12, 2286-2290, 1982.
doi:10.1063/1.525307

9. Frangos, P. V. and D. L. Jaggard, "Analytical and numerical solution to the two-potential Zakharov-Shabat inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 4, 399-404, 1992.
doi:10.1109/8.138841

10. Xiao, G. B. and K. Yashiro, "An improved algorithm of constructing potentials from cauchy data and its application in synthesis of nonuniform transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 8, 2025-2028, 2002.
doi:10.1109/TMTT.2002.801382

11. Gelfand, I. M. and B. M. Levitan, "On the determination of a differential equation by its spearal function," American Mathematical Society Translations, Vol. 1, 253-304, 1955.

12. Marchenko, V. A., "Reconstruction of the potential energy from the phase of scattered waves," Dokl. Akad. Nauk. SSR, Vol. 104, 635-698, 1955.

13. Frangos, P. V., "One-dimensional inverse scattering: Exact methods and applications," Ph.D. Thesis, University of Pennsylvania, 1986.

14. Frangos, P. V. and D. L. Jaggard, "Inverse scattering: Solution of coupled Geland-Levitan-Marchenko integral equations using successive kernel approximations," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 6, 547-552, 1995.
doi:10.1109/8.387169

15. Song, G. H. and S. Y. Shin, "Design of corrugated waveguide filters by the Gelfand-Levitan-Marchenko inverse-scattering method," Journal of the Optical Society of America. A, Optics, Image Science, and Vision, Vol. 2, 1905-1915, 1985.
doi:10.1364/JOSAA.2.001905

16. Modelski, J. and A. Synyavskyy, "A new numerical method for Zakharov-Shabat's inverse scattering problem solution," International Conference on Microwaves, Radar and Wireless Communications, Krakow, 2006.

17. Frangos, P. V. and D. L. Jaggard, "A numerical solution to the Zakharov-Shabat inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 1, 74-79, 1991.
doi:10.1109/8.64438

18. Xiao, G. B. and K. Yashiro, "An e±cient algorithm for solving Zakharov-Shabat inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 6, 807-811, 2002.
doi:10.1109/TAP.2002.1017660

19. Zhang, Q. H., M. Sorine, and M. Admane, "Inverse scattering for soft fault diagnosis in electric transmission lines," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 1, 141-148, 2011.
doi:10.1109/TAP.2010.2090462

20. Tang, H. B. and Q. H. Zhang, "Inverse scattering for lossy electric transmission line soft fault diagnosis," IEEE Antennas and Propagation Society International Symposium, Toronto, 2010.

21. Eckhaus, W. and A. V. Harten, The Inverse Scattering Transformation and the Theory of Solitons: An Introduction, Elsevier, 1981.