Vol. 20
Latest Volume
All Volumes
PIERL 124 [2025] PIERL 123 [2025] PIERL 122 [2024] PIERL 121 [2024] PIERL 120 [2024] PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2011-01-25
The Nonlinear Absorption of a Strong Electromagnetic Waves Caused by Confined Electrons in a Cylindrical Quantum Wire
By
Progress In Electromagnetics Research Letters, Vol. 20, 87-96, 2011
Abstract
The nonlinear absorption of a strong electromagnetic wave caused by electrons confined in cylindrical quantum wires is theoretically studied by using the quantum kinetic equation for electrons. An analytic expression of the nonlinear absorption coefficient of a strong electromagnetic wave caused by electrons confined in a cylindrical quantum wire with a parabolic potential for electron-optical phonon scattering is obtained. The dependence of the nonlinear absorption coefficient on the intensity E0 and the frequency Ω of the external strong electromagnetic wave, the temperature T of the system and the radius R of the wires is strong and nonlinear. Analytic expression is numerically calculated and discussed for a GaAs/GaAsAl quantum wire. The results are compared with those for normal bulk semiconductors and quantum wells to show the differences.
Citation
Hoang Dinh Trien, and N. V. Nhan, "The Nonlinear Absorption of a Strong Electromagnetic Waves Caused by Confined Electrons in a Cylindrical Quantum Wire," Progress In Electromagnetics Research Letters, Vol. 20, 87-96, 2011.
doi:10.2528/PIERL10110910
References

1. Shmelev, G. M., L. A. Chaikovskii, and N. Q. Bau, "HF conduction in semiconductors superlattices," Sov. Phys. Tech. Semicond., Vol. 12, 1932, 1978.

2. Matsumoto, Y., S. Ozaki, and S. Adachi, "Optical properties of the bulk amorphous semiconductor ZnIn2Te4," J. Appl. Phys., Vol. 86, 3705, 1999.
doi:10.1063/1.371282

3. Brown, E. R. and S. J. Eglash, "Calculation of the intersubband absorption strength in ellipsoidal-valley quantum wells," Phys. Rev. B, Vol. 41, 7559, 1990.
doi:10.1103/PhysRevB.41.7559

4. Wu, , J.-J., D. Chen, K.-L. Liao, T.-J. Yang, and W.-L. Ouyang, "The optical properties of Bragg fiber with a fiber core of 2-dimention elliptical-hole photonic crystal structure," Progress In Electromagnetics Research Letters, Vol. 10, 87-95, 2009.
doi:10.2528/PIERL09061804

5. Bau, N. Q. and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in quantum wells by the Kubo-Mori method," J. Japan Phys. Soc., Vol. 67, 3875, 1998.
doi:10.1143/JPSJ.67.3875

6. Bau, N. Q., N. V. Nhan, and T. C. Phong, "Calculations of the absorption coefficient of a weak electromagnetic wave by free carriers in doped superlattices by using the Kubo-Mori method," J. Korean Phys. Soc., Vol. 41, 149, 2002.

7. Ibragimov, G. B., "Optical intersubband transitions in quantum wires with an applied magnetic field," Semiconductor Physics, Quantum Electronics and Optoelectronics, Vol. 7, 283, 2004.

8. Bau, N. Q., L. Dinh and T. C. Phong, "Absorption coefficient of weak electromagnetic waves caused by confined electrons in quantum wires," J. Korean Phys. Soc., Vol. 51, 1325, 2007.
doi:10.3938/jkps.51.1325

9. Pavlovich, V. V. and E. M. Epshtein, "Quantum theory of absorption of electronmagnetic wave by free carries in simiconductors," Sov. Phys. Solid State, Vol. 19, 1760, 1977.

10. Bau, N. Q., D. M. Hung, and N. B. Ngoc, "The nonlinear absorption coefficient of a strong electromagnetic wave caused by confined electrons in quantum wells," J. Korean Phys. Soc., Vol. 54, 765, 2009.
doi:10.3938/jkps.54.765

11. Kim, K. W., M. A. Stroscio, A. Bhatt, R. Mickevicius, and V. V. Mitin, "Electron-optical-phonon scattering rates in a rectangular semiconductor quantum wire," J. Appl. Phys., Vol. 70, 319, 1991.
doi:10.1063/1.350275

12. Antonyuk, V. B., A. G. Malshukov, M. Larsson, and K. A. Chao, "Effect of electron-phonon interaction on electron conductance in one-dimensional systems," Phys. Rev. B, Vol. 69, 155308, 2004.
doi:10.1103/PhysRevB.69.155308

13. Chernoutsan, K., V. Dneprovskii, S. Gavrilov, V. Gusev, E. Muljarov, S. Romano, A. Syrnicov, O. Shaligina, and E. Zhukov, "Linear and nonlinear optical properties of excitons in semiconductordielectric quantum wires," Physica E, Vol. 15, 111, 2002.
doi:10.1016/S1386-9477(02)00442-3

14. Rossi, F. and E. Molinari, "Linear and nonlinear optical properties of realistic quantum-wire structures: The dominant role of Coulomb correlation," Phys. Rev B, Vol. 53, 16462, 1996.
doi:10.1103/PhysRevB.53.16462

15. Malevich, V. L. and E. M. Epstein, "Nonlinear optical properties of conduction electrons in semiconductors," Sov. Quantum Electronic, Vol. 1, 1468, 1974.

16. Bau, N. Q., L. T. Hung, and N. D. Nam, "The nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in quantum wells under the in°uences of confined phonons," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 13, 1751-1761, 2010.

17. Bau, N. Q., D. M. Hung, and L. T. Hung, "The influences of confined phonons on the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlattices," Progress In Electromagnetics Research Letter, Vol. 15, 175-185, 2010.
doi:10.2528/PIERL10030911

18. Bau , N. Q. and D. M. Hung, "Calculation of the nonlinear absorption coefficient of a strong electromagnetic wave by confined electrons in doping superlatices," Progress In Electromagnetics Research B, Vol. 25, 39-52, 2010.
doi:10.2528/PIERB10062902

19. Yakar, Y., B. Cakir, and A. Ozmen, "Calculation of linear and nonlinear optical absorption coefficients of a spherical quantum dot with parabolic potential," Opt. Commun., Vol. 283, 1795, 2010.
doi:10.1016/j.optcom.2009.12.027