Vol. 17
Latest Volume
All Volumes
PIERL 119 [2024] PIERL 118 [2024] PIERL 117 [2024] PIERL 116 [2024] PIERL 115 [2024] PIERL 114 [2023] PIERL 113 [2023] PIERL 112 [2023] PIERL 111 [2023] PIERL 110 [2023] PIERL 109 [2023] PIERL 108 [2023] PIERL 107 [2022] PIERL 106 [2022] PIERL 105 [2022] PIERL 104 [2022] PIERL 103 [2022] PIERL 102 [2022] PIERL 101 [2021] PIERL 100 [2021] PIERL 99 [2021] PIERL 98 [2021] PIERL 97 [2021] PIERL 96 [2021] PIERL 95 [2021] PIERL 94 [2020] PIERL 93 [2020] PIERL 92 [2020] PIERL 91 [2020] PIERL 90 [2020] PIERL 89 [2020] PIERL 88 [2020] PIERL 87 [2019] PIERL 86 [2019] PIERL 85 [2019] PIERL 84 [2019] PIERL 83 [2019] PIERL 82 [2019] PIERL 81 [2019] PIERL 80 [2018] PIERL 79 [2018] PIERL 78 [2018] PIERL 77 [2018] PIERL 76 [2018] PIERL 75 [2018] PIERL 74 [2018] PIERL 73 [2018] PIERL 72 [2018] PIERL 71 [2017] PIERL 70 [2017] PIERL 69 [2017] PIERL 68 [2017] PIERL 67 [2017] PIERL 66 [2017] PIERL 65 [2017] PIERL 64 [2016] PIERL 63 [2016] PIERL 62 [2016] PIERL 61 [2016] PIERL 60 [2016] PIERL 59 [2016] PIERL 58 [2016] PIERL 57 [2015] PIERL 56 [2015] PIERL 55 [2015] PIERL 54 [2015] PIERL 53 [2015] PIERL 52 [2015] PIERL 51 [2015] PIERL 50 [2014] PIERL 49 [2014] PIERL 48 [2014] PIERL 47 [2014] PIERL 46 [2014] PIERL 45 [2014] PIERL 44 [2014] PIERL 43 [2013] PIERL 42 [2013] PIERL 41 [2013] PIERL 40 [2013] PIERL 39 [2013] PIERL 38 [2013] PIERL 37 [2013] PIERL 36 [2013] PIERL 35 [2012] PIERL 34 [2012] PIERL 33 [2012] PIERL 32 [2012] PIERL 31 [2012] PIERL 30 [2012] PIERL 29 [2012] PIERL 28 [2012] PIERL 27 [2011] PIERL 26 [2011] PIERL 25 [2011] PIERL 24 [2011] PIERL 23 [2011] PIERL 22 [2011] PIERL 21 [2011] PIERL 20 [2011] PIERL 19 [2010] PIERL 18 [2010] PIERL 17 [2010] PIERL 16 [2010] PIERL 15 [2010] PIERL 14 [2010] PIERL 13 [2010] PIERL 12 [2009] PIERL 11 [2009] PIERL 10 [2009] PIERL 9 [2009] PIERL 8 [2009] PIERL 7 [2009] PIERL 6 [2009] PIERL 5 [2008] PIERL 4 [2008] PIERL 3 [2008] PIERL 2 [2008] PIERL 1 [2008]
2010-08-18
Efficient Excitation of Waveguides in Crank-Nicolson FDTD
By
Progress In Electromagnetics Research Letters, Vol. 17, 27-38, 2010
Abstract
In this paper, we present a procedure to calculate the discrete modes propagated with Crank-Nicolson FDTD in metallic waveguides. This procedure enables the correct excitation of this kind of waveguides at any resolution. The problem is reduced to solving an eigenvalue equation, which is performed, both in a closed form, for the usual rectangular waveguide, and numerically in the most general case, validated here with a ridged rectangular waveguide.
Citation
Salvador Gonzalez Garcia, Fumie Costen, Mario Fernandez Pantoja, Luis Diaz Angulo, and Jesus Alvarez, "Efficient Excitation of Waveguides in Crank-Nicolson FDTD," Progress In Electromagnetics Research Letters, Vol. 17, 27-38, 2010.
doi:10.2528/PIERL10072008
References

1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, Mar. 1966.
doi:10.1109/TAP.1966.1138693

2. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Boston, MA, 2005.

3. Zheng, F., Z. Chen, and J. Zhang, "A Finite-Difference Time-Domain method without the Courant stability conditions," IEEE Microwave Guided Wave Letters, Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026

4. Namiki, T., "A new FDTD algorithm based on alternating-direction implicit method," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 10, 2003-2007, 1999.
doi:10.1109/22.795075

5. Tan, E. L., "Unconditionally stable LOD-FDTD method for 3-D Maxwell's equations," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 2, 85-87, 2007.
doi:10.1109/LMWC.2006.890166

6. Liang, F. and G. Wan, "Fourth-order locally one-dimensional FDTD method," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 14--15, 2035-2043, 2008.
doi:10.1163/156939308787538017

7. Lee, J. and B. Fornberg, "Some unconditionally stable time stepping methods for the 3D Maxwell's equations," Journal of Computational and Applied Mathematics, Vol. 166, 497-523, 2004.
doi:10.1016/j.cam.2003.09.001

8. Garcia, S. G., T.-W. Lee, and S. C. Hagness, "On the accuracy of the ADI-FDTD method," Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 31-34, 2002.
doi:10.1109/LAWP.2002.802583

9. Garcia, S. G., R. G. Rubio, A. R. Bretones, and R. G. Martin, "On the dispersion relation of ADI-FDTD," IEEE Microwave and Wireless Components Letters, Vol. 16, No. 6, 354-356, Jun. 2006.
doi:10.1109/LMWC.2006.875619

10. Yang, Y., R. Chen, and E. Yung, "The unconditionally stable Crank-Nicolson FDTD method for three-dimensional Maxwell's equations," Microwave and Optical Technology Letters, Vol. 48, 1619-1622, 2006.
doi:10.1002/mop.21684

11. Yang, Y., H. Fan, D. Z. Ding, and S. B. Liu, "Application of the preconditioned GMRES to the Crank-Nicolson Finite-Difference Time-Domain algorithm for 3D full-wave analysis of planar circuits," Microwave and Optical Technology Letters, Vol. 50, No. 6, 1458-1463, 2008.
doi:10.1002/mop.23396

12. Garcia, S., R. G. Rubio, A. R. Bretones, and R. G. Lopez, "Revisiting the stability of Crank-Nicolson and ADI-FDTD," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 11, 3199-3203, 2007.
doi:10.1109/TAP.2007.908794

13. Rouf, H. K., F. Costen, and S. G. Garcia, "3D Crank-Nicolson Finite-Difference Time-Domain method for dispersive media," IET Electronics Letters, Vol. 45, No. 19, 961-962, 2009.
doi:10.1049/el.2009.1940

14. Rouf, H. K., F. Costen, S. G. Garcia, and S. Fujino, "On the solution of 3D frequency dependent Crank-Nicolson FDTD scheme," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2163-2175, 2009.
doi:10.1163/156939309790109261

15. Rouf, H. K., F. Costen, and S. G. Garcia, "3D Crank-Nicolson Finite-Difference Time-Domain method for dispersive media," IET Electronics Letters, Vol. 45, No. 19, 961-962, 2009.
doi:10.1049/el.2009.1940

16. Xu, K., Z. Fan, D. Z. Ding, and R. S. Chen, "GPU accelerated unconditionally stable Crank-Nicolson FDTD method for the analysis of three-dimensional microwave circuits," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606

17. Celuch-Marcysiak, M. and W. K. Gwarek, "Formal equivalence and efficiency comparison of the FDTD, TLM and SN methods in application to microwave CAD programs," 21st European Microwave Conference, Vol. 1, 199-204, 1991.
doi:10.1109/EUMA.1991.336433

18. Railton, C. J. and J. P. McGeehan, "The use of mode templates to improve the accuracy of the finite difference time domain method," 21st European Microwave Conference, Vol. 2, 1278-1283, 1991.
doi:10.1109/EUMA.1991.336521

19. Jin, H., R. Vahldieck, and S. Xiao, "A full-wave analysis of arbitrary guiding structures using a two dimensional TLM mesh," 21st European Microwave Conference, Vol. 1, 205-210, 1991.
doi:10.1109/EUMA.1991.336434

20. Arndt, F., V. Brankovic, and D. V. Krupezevic, "An improved FDTD full wave analysis for arbitrary guiding structures using a two-dimensional mesh," IEEE MTT-S International Microwave Symposium, Vol. 1, 389-392, 1992.

21. Asi, A. and L. Shafai, "Dispersion analysis of anisotropic inhomogeneous waveguides using compact 2D-FDTD," IET Electronics Letters, Vol. 28, No. 15, 1451-1452, 1992.
doi:10.1049/el:19920923

22. Gwarek, W. K., T. Morawski, and C. Mroczkowski, "Application of the FDTD method to the analysis of circuits described by the two-dimensional vector wave equation," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, No. 2, 311-317, 1993.
doi:10.1109/22.216473

23. Xiao, S., R. Vahldieck, and H. Jin, "Full-wave analysis of guided wave structures using a novel 2-D FDTD," IEEE Microwave and Guided Wave Letters, Vol. 2, No. 5, 165-167, 1992.
doi:10.1109/75.134342

24. Gwarek, W. and M. Celuch-Marcysiak, "Wide-band S-parameter extraction from FDTD simulations for propagating and evanescent modes in inhomogeneous guides," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 8, 2003.
doi:10.1109/TMTT.2003.815265

25. Mrozowski, M., "Function expansion algorithms for the time-domain analysis of shielded structures supporting electromagnetic waves," International Journal of Numerical Modelling, Vol. 7, No. 1, 77-84, 1994.
doi:10.1002/jnm.1660070203

26. Hadi, M. F. and S. F. Mahmoud, "Optimizing the compact-FDTD algorithm for electrically large waveguiding structures," Progress In Electromagnetics Research, Vol. 75, 253-269, 2007.
doi:10.2528/PIER07060703

27. Luo, S. and Z. Chen, "An efficient modal FDTD for absorbing boundary conditions and incident wave generator in waveguide structures," Progress In Electromagnetics Research, Vol. 68, No. 229, 2007.

28. Garcia, S., A. Bretones, M. Pantoja, and R. Lopez, "Yet another look at FDTD numerical errors," IEEE Antennas and Propagation Magazine, Vol. 49, No. 3, 156-161, 2007.
doi:10.1109/MAP.2007.4293958