Vol. 74
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2017-04-10
On the Influence of Channel Tortuosity on Electric Fields Generated by Lightning Return Strokes at Close Distance
By
Progress In Electromagnetics Research B, Vol. 74, 61-75, 2017
Abstract
In this paper the results of the estimated electric field associated with tortuous lightning paths at close distance (50 m to 500 m) are shown. Such results are compared with experimental data available in the literature and are illustrated along with a quantitative analysis of the field waveforms and their frequency spectra. The limits of the usual straight-vertical channel assumption and the influence of tortuosity at different azimuth and distances from the lightning channel base are also highlighted.
Citation
Carlo Petrarca, Simone Minucci, and Amedeo Andreotti, "On the Influence of Channel Tortuosity on Electric Fields Generated by Lightning Return Strokes at Close Distance," Progress In Electromagnetics Research B, Vol. 74, 61-75, 2017.
doi:10.2528/PIERB17012701
References

1. Uman, M. A. and V. A. Rakov, Lightning Physics and Effects, Cambridge University Press, 2007.

2. Uman, M. A., The Art and Science of Lightning Protection, Cambridge University Press, 2008.
doi:10.1017/CBO9780511585890

3. Cooray, V., (editor), Lightning Electromagnetics, IET Power and Energy Series 62, 2012.

4. Rachidi, F., C. A. Nucci, and M. Ianoz, "Transient analysis of multiconductor lines above a lossy ground," IEEE Trans. Power Delivery, Vol. 14, No. 1, 294-302, Jan. 1999.
doi:10.1109/61.736741

5. Diendorfer, G., "Induced voltage on an overhead line due to nearby lightning," IEEE Trans. on Electromagnetic Compatibility, Vol. 32, No. 4, 292-299, Nov. 1990.
doi:10.1109/15.59889

6. Høidalen, H. K., J. Slebtak, and T. Henriksen, "Ground effects on induced voltages from nearby lightning," IEEE Trans. on Electromagnetic Compatibility, Vol. 32, No. 4, 292-299, Nov. 1990.

7. Andreotti, A. P. and V. A. Rakov, "An analytical approach to calculation of lightning induced voltages on overhead lines in case of lossy ground — Part I: Model development," IEEE Trans. Power Delivery, Vol. 28, No. 2, 1213-1223, Nov. 2013.
doi:10.1109/TPWRD.2013.2241084

8. Andreotti, A. P. and V. A. Rakov, "An analytical approach to calculation of lightning induced voltages on overhead lines in case of lossy ground — Part II: Comparison with other models," IEEE. Trans. Power Delivery, Vol. 28, No. 2, 1224-1230, Nov. 2013.
doi:10.1109/TPWRD.2013.2241085

9. Borghetti, A., S. Morched, F. Napolitano, C. A. Nucci, and M. Paolone, "Lightning-induced overvoltages transferred through distribution power transformers," IEEE Trans. Power Delivery, Vol. 24, No. 1, 360-372, Jan. 2009.
doi:10.1109/TPWRD.2008.2002674

10. Tesche, F. M., A. W. K¨alin, B. Br¨andli, B. Reusser, M. Ianoz, D. Tabar, and P. Zweiacker, "Estimates of lightning-induced voltage stresses with buried shielded conduits," IEEE Trans. on Electromagnetic Compatibility, Vol. 40, 492-504, 1998.
doi:10.1109/15.736209

11. Petrache, E., F. Rachidi, M. Paolone, C. A. Nucci, V. A. Rakov, and M. A. Uman, "Lightning induced disturbances in buried cables — Part I: Theory," IEEE Trans. on Electromagnetic Compatibility, Vol. 47, No. 3, 498-508, 2005.
doi:10.1109/TEMC.2005.853161

12. IEEE Guide for Improving the Lightning Performance of Electric Power Overhead Distribution Lines, IEEE Standard 1410, 2010.

13. Cummins, K. L., "Lightning information for use in power systems analysis: How much more do we need to know?," Transmission and Distribution Conference and Exhibition 2002: Asia Pacific, IEEE/PES, Vol. 1, 529-533, Yokohama, Japan, Oct. 2002.
doi:10.1109/TDC.2002.1178449

14. Rakov, V. A. and M. A. Uman, "Review and evaluation lightning return stroke models including some aspects of their application," IEEE Trans. on Electromagnetic Compatibility, Vol. 40, No. 4, 403-426, 1998.
doi:10.1109/15.736202

15. Rakov, V. A. and F. Rachidi, "Overview of recent progress in lightning research and lightning protection," IEEE Trans. on Electromagnetic Compatibility, Vol. 51, No. 3, 428-442, 2009.
doi:10.1109/TEMC.2009.2019267

16. Uman, M. A., The Lightning Discharge, Academic Press, 1987.

17. Uman, M., J. Schoene, V. Rakov, K. J. Rambo, and G. H. Schnetzer, "Correlated time derivatives of current, electric field intensity and magnetic flux density for triggered lightning at 15 m," Journal of Geophysical Research, Vol. 107, 4160-4172, 2002.
doi:10.1029/2000JD000249

18. Izadi, M., M. Z. A. A. Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.
doi:10.2528/PIER11042103

19. Gomes, C., V. Cooray, and M. Z. A. Ab Kadir, "Vertical electric fields and field change parameters due to partly inclined lightning leader channels," Progress In Electromagnetics Research, Vol. 135, 55-80, 2013.
doi:10.2528/PIER12081809

20. Amarasinghe, D., U. Sonnadara, M. Berg, and V. Cooray, "Channel tortuosity of long laboratory sparks," Journal of Electostatics, Vol. 65, No. 8, 521-526, 2007.
doi:10.1016/j.elstat.2006.11.009

21. Andreotti, A., U. De Martinis, C. Petrarca, V. A. Rakov, and L. Verolino, "Lightning electromagnetic fields and induced voltages: Influence of channel tortuosity," 30th URSI General Assembly and Scientific Symposium, URSIGASS, paper 6050702, Turkey, 2011.

22. Andreotti, A., C. Petrarca, V. A. Rakov, and L. Verolino, "Calculation of voltages induced on overhead conductors by nonvertical lightning channels," IEEE Trans. on Electromagnetic Compatibility, Vol. 54, No. 4, 860-870, Jan. 2012.
doi:10.1109/TEMC.2011.2174995

23. Andreotti, A., C. Petrarca, and A. Pierno, "On the effects of channel tortuosity in lightning-induced voltages assessment," IEEE Trans. on Electromagnetic Compatibility, Vol. 57, No. 5, 1096-1102, Oct. 2015.
doi:10.1109/TEMC.2015.2439956

24. Le Vine, M. and R. Meneghini, "Simulation of radiation from lightning return strokes: The effects of tortuosity," Radio Sci., Vol. 13, No. 5, 801-809, Sep./Oct. 1978.
doi:10.1029/RS013i005p00801

25. Lupo, G., C. Petrarca, V. Tucci, and M. Vitelli, "EM fields generated by lightning channels with arbitrary location and slope," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 1, 39-53, Feb. 2000.
doi:10.1109/15.831703

26. Lupo, G., C. Petrarca, V. Tucci, and M. Vitelli, "EM fields associated with lightning channels: On the effect of tortuosity and branching," IEEE Trans. on Electromagnetic Compatibility, Vol. 42, No. 4, 394-404, Nov. 2000.
doi:10.1109/15.902309

27. Petrarca, C., "Geometrical and physical parameters affecting distant electric fields radiated by lightning return strokes," Progress In Electromagnetics Research B, Vol. 58, 167-180, 2014.
doi:10.2528/PIERB14012009

28. Chia, K. L. and A. C. Liew, "Effect of tortuosity of lightning stroke path on lightning electromagnetic fields," Asia-Pacific Symposium on EMC, 251-254, Singapore, 2008.

29. Song, T. X., Y. H. Liu, and J. M. Xiong, "Computations of electromagnetic fields radiated from complex lightning channels," Progress In Electromagnetics Research, Vol. 73, 93-105, 2007.
doi:10.2528/PIER07032501

30. Meredith, S. L., S. K. Earles, I. N. Kostanic, N. E. Turner, and C. E. Otero, "How lightning tortuosity affects the electromagnetic fields by augmenting their effective distance," Progress In Electromagnetics Research B, Vol. 25, 155-169, 2010.
doi:10.2528/PIERB10072808

31. Andreotti, A., G. Lupo, and C. Petrarca, "Evaluation of EM fields from return stroke for indirect — Lightning protection of wind turbines," 2013 International Conference on Clean Electrical Power (ICCEP), 755-759, Alghero, Italy, Jun. 2013.

32. Idone, V. P. and R. E. Orville, "Channel tortuosity variation in Florida triggered lightning," Geophysical Research Letters, Vol. 15, No. 7, 645-648, Jul. 1988.
doi:10.1029/GL015i007p00645

33. Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, 1975.

34. Heidler, F., "Traveling current source model for LEMP calculation," 6th Int. Zurich Symposium on Electromagnetic Compatibility, 157-162, Zurich, Switzerland, 1985.

35. Nucci, C. A., G. Diendorfer, M. A. Uman, F. Rachidi, M. Ianoz, and C. Mazzetti, "Lightning return stroke current models with specified channel-base current: A review and comparison," Journal of Geophysical Research, Vol. 95, No. D12, 20395-20408, Nov. 1990.
doi:10.1029/JD095iD12p20395

36. Rakov, V. A. and A. A. Dulzon, "A modified transmission line model for lightning return stroke field calculations," 9th Int. Symposium on Electromagn. Compat., 229-235, Zurich, Switzerland, Mar. 1991.

37. Baba, Y. and V. Rakov, "Electric and magnetic fields predicted by different electromagnetic models of the lightning return strokes versus measured fields," IEEE Trans. on Electromagnetic Compatibility, Vol. 51, No. 3, 479-487, Nov. 2009.
doi:10.1109/TEMC.2009.2019122

38. Lin, Y. T., M. A. Uman, J. A. Tiller, R. D. Brantley, W. H. Beasley, E. P. Krider, and C. D. Weidman, "Characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurements," Journal of Geophysical Research, Vol. 84, 6307-6314, 1979.
doi:10.1029/JC084iC10p06307

39. Jerauld, J., M. A. Uman, V. A. Rakov, K. J. Rambo, D. M. Jordan, and G. H. Schnetzer, "Electric and magnetic fields and field derivatives from lightning stepped leaders and first return strokes measured at distances from 100 to 1000 m," Journal of Geophysical Research, Vol. 113, No. D17111, 1-15, Sep. 2008.

40. Uman, M., V. Rakov, G. H. Schnetzer, K. J. Rambo, D. E. Crawford, and R. J. Fisher, "Time derivative of the electric field 10, 14 and 30 m from triggered lightning strokes," Journal of Geophysical Research, Vol. 105, No. D12, 15577-15595, 2000.
doi:10.1029/2000JD900046

41. Rubinstein, M., F. Rachidi, M. A. Uman, R. Thottappillil, V. A. Rakov, and C. A. Nucci, "Characterization of vertical electric fields 500 m and 30 m from triggered lightning," Journal of Geophysical Research, Vol. 100, No. D5, 8863-8872, 1995.
doi:10.1029/95JD00213

42. Chen, M., Y. Du, and W. Dong, "Some new observations of lightning spectra in the bands above 25 MHz," Radio Science Conference, 635-637, Aug. 2004.

43. Le Vine, M., "Review of measurements of the RF spectrum of radiation from lightning," Meteorology and Atmospheric Physics, No. 37, 195-204, 1987.
doi:10.1007/BF01042441

44. Willett, J. C., J. C. Bailey, J. C. Leteinturier, and E. P. Krider, "Lightning electromagnetic radiation field spectra in the interval from 0.2 to 20 MHz," Journal of Geophysical Research, Vol. 95, No. 20, 367-387, 1990.