Vol. 45
Latest Volume
All Volumes
PIERB 109 [2024] PIERB 108 [2024] PIERB 107 [2024] PIERB 106 [2024] PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-10-25
A Simple Synthesis Technique of Single-Square-Loop Frequency Selective Surface
By
Progress In Electromagnetics Research B, Vol. 45, 165-185, 2012
Abstract
In this manuscript, a simple synthesis method of single square loop frequency selective surface (SSLFSS) is discussed, which may find the suitable application in the fast analysis and fabrication of the frequency-selective surface. The presented technique is used to design SSLFSS at 3 GHz, 15 GHz, 22 GHz and 26 GHZ. At every frequency of interest, the analytical result is very close to the required result. Moreover, a way to control the reflection at any frequency is discussed, which may find an application in controlling the reflection level at any frequency. However, we have proposed two simple, cheaper and lightweight structures at 3 GHz and 22 GHz for the application in various satellite communications. The proposed process has been extended to the analysis of bandpass structure and desired results have been achieved, which indicates the utility of the method of synthesis of both the bandpass and bandstop structures.
Citation
Kumud Ranjan Jha, Ghanshyam Singh, and Rajeev Jyoti, "A Simple Synthesis Technique of Single-Square-Loop Frequency Selective Surface," Progress In Electromagnetics Research B, Vol. 45, 165-185, 2012.
doi:10.2528/PIERB12090104
References

1. Wu, T. K., Frequency Selective Surfaces and Grid Array, John Wiley and Sons, New York, 1995.

2. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley and Sons, New York, 2000.
doi:10.1002/0471723770

3. Sakran, F. and Y. Neve-Oz, "Absorbing frequency-selective-surface for the mm-wave range," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2649-2655, 2008.
doi:10.1109/TAP.2008.924701

4. Singh, D., A. Kumar, S. Meena, and V. Agrawal, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.

5. Ulrich, R., "Far-infrared properties of metallic mesh and its complementary structure," Infrared Physics, Vol. 7, No. 1, 37-50, 1967.
doi:10.1016/0020-0891(67)90028-0

6. Durschlag, M. S. and T. A. Detemple, "Far-IR optical properties of freestanding and dielectrically backed metal meshes," Applied Optics, Vol. 20, No. 7, 1245-1253, 1981.
doi:10.1364/AO.20.001245

7. Monni, S., A. Neto, G. Gerini, F. Nennie, and A. Tijhuis, "Frequency-selective surface to prevent interference between radar and SATCOM antennas," IEEE Antennas Wireless Propag. Lett., Vol. 8, 220-223, 2009.
doi:10.1109/LAWP.2009.2013166

8. Rahmat-Samii, Y. and A. Densmore, "A history of reflector antenna development: Past, present and future," Proc. IEEE Microwave and Optoelectronics Conference, 17-23, California, USA, Nov. 3-6, 2009.

9. Bayatpur, F., "Metamaterial-inspired frequency-selective surfaces,", Ph.D. Dissertation, University of Michigan, USA, 2009.

10. Yilmaz, A. E. and M. Kuzuoglu, "Design of the square loop frequency selective surfaces with particle swarm optimization via the equivalent circuit model," Radioengineering, Vol. 18, No. 2, 95-102, 2009.

11. Baytpur, F. and K. Sarabandi, "Single-layered high-order miniaturized-element frequency-selective surfaces," IEEE Trans. Microw. Theo. Tech., Vol. 56, No. 4, 774-781, 2008.
doi:10.1109/TMTT.2008.919654

12. Dickie, R., R. Cahill, H. Gamble, V. Fusco, M. Henery, M. Oldfield, P. Huggard, P. Howard, N. Grant, Y. Munro, and P. de Maagt, "Sub-millimeter wave frequency selective surface with polarization independent spectral responses," IEEE Trans. Antennas Propag., Vol. 57, No. 7, 1985-1994, 2009.
doi:10.1109/TAP.2009.2021933

13. Pirahadi, A., F. Keshmiri, M. Hakkak, and M. Tayarani, "Analysis and design of dual band high directivity EBG resonator antenna using square loop FSS as superstrate layer," Progress In Electromagnetics Research, Vol. 70, 1-20, 2007.
doi:10.2528/PIER07010201

14. Mittra, R., C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces a review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, 1988.
doi:10.1109/5.16352

15. Sung, H. H., "Frequency selective wallpaper for mitigating indoor wireless interference," Ph.D. Thesis, Aukland University, NZ, 2006.

16. Marcuwitz, N., Waveguide Handbook, 1st Ed., McGraw-Hill, New York, 1951.

17. Langley, R. J. and E. A. Parker, "Equivalent circuit model for arrays of square loops," Electronics Letters, Vol. 18, No. 7, 294-296, 1982.
doi:10.1049/el:19820201

18. Lee, C. K. and R. J. Langley, "Equivalent-circuit models for frequency selective surfaces at oblique angles of incidence," IEE Proceedings H --- Microwaves Optics and Antennas, Vol. 132, 395-399, 1985.
doi:10.1049/ip-h-2.1985.0070

19. Reed, J. A., "Frequency selective surfaces with multiple periodic elements,", Ph.D. Dissertation, University of Texas at Dallas, USA, 1997.

20. Pozar, D. M., Microwave Engineering, 2nd Ed., John Wiley and Sons, NY, USA, 1998.

21. Callaghan, P., E. A. Parker, and R. J. Langley, "Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces," IEE Proc. H --- Microwave Antennas Propagation, Vol. 138, No. 5, 448-454, 1991.
doi:10.1049/ip-h-2.1991.0075