Vol. 43
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2012-08-14
Performance Enhancement of the RFID Epc Gen2 Protocol by Exploiting Collision Recovery
By
Progress In Electromagnetics Research B, Vol. 43, 53-72, 2012
Abstract
Maximizing the Radio Frequency Identi cation (RFID) performance is one of the main challenges in application domains, such as logistics and supply chain management, where the undesired effect of Tag collisions can significantly degrade the speed of the inventory process. The dominating UHF EPC Class-1 Generation-2 (EPC Gen2) protocol only specifies collision avoidance algorithms but makes no provision for collision resolution. In this paper, performance enhancement of the EPC Gen2 standard exploiting Tag collision recovery is demonstrated, for the first time, in real time with measurements. Three simple and effective approaches to handle successful Tag acknowledgments of recovered collided packets are proposed and implemented on a software-defined Reader and programmable Tags. The attained benefits over the conventional EPC Gen2 MAC scheme are significant: the throughput per time slot is increased by 72% while the overall time required to inventory the Tag population is reduced by 26%. The effectiveness of the proposed approach and the validity of the achieved results are confirmed by the good agreement with simulations reported in the literature.
Citation
Danilo De Donno, Luciano Tarricone, Luca Catarinucci, Vasileios Lakafosis, and Manos M. Tentzeris, "Performance Enhancement of the RFID Epc Gen2 Protocol by Exploiting Collision Recovery," Progress In Electromagnetics Research B, Vol. 43, 53-72, 2012.
doi:10.2528/PIERB12060807
References

1. Simon, L., P. Saengudomlert, and U. Ketprom, "Speed adjustment algorithm for an RFID reader and conveyor belt system performing dynamic framed slotted aloha," Proceedings of 2008 IEEE International Conference on RFID, April 2008.

2. Singh, J., E. Olsen, K. Vorst, and K. Tripp, "RFID Tag readability issues with palletized loads of consumer goods," Packaging Technology and Science, 2009.

3. Lei, X., et al., "Efficient tag identification in mobile RFID systems," Proceedings of IEEE INFOCOM, March 2010.

4. EPCglobal "EPC radio-frequency identify protocols --- Class-1 generation-2 UHF RFID protocol for communications at 860 MHz-960 MHz,", Version 1.2.0, 2008.

5. Roberts, L. G., "Aloha packet system with and without slots and capture," SIGCOMM Computer Communications Review, 1975.

6. Angerer, C., R. Langwieser, and M. Rupp, "RFID reader receivers for physical layer collision recovery," IEEE Transactions on Communications, Vol. 58, No. 12, 3526-3537, December 2010.
doi:10.1109/TCOMM.2010.101910.100004

7. Mindikoglu, A. F. and A.-J. Van Der Veen, "Separation of overlapping RFID signals by antenna arrays," Proceedings of the International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2737-2740, 2008.

8. Frey, B., "Source separation for UHF RFID,", Master Thesis, Delft and ETH, Mentor Geert Leus, Supervisor Helmut Bolskei, 2008.

9. Zhai, J. and G.-N. Wang, "An anti-collision algorithm using two-functioned estimation for RFID Tags," International Conference on Computational Science and Its Applications (ICCSA), 702-711, Springer, Berlin, Heidelberg, 2005.

10. Nikitin, P. V. and K. V. S. Rao, "Theory and measurement of backscattering from RFID Tags," IEEE Antennas and Propagation Magazine, Vol. 48, No. 6, 212-218, 2006.
doi:10.1109/MAP.2006.323323

11. Kimionis, J., A. Bletsas, A. G. Dimitriou, and G. N. Karystinos, "Inventory time reduction in Gen2 with single-antenna separation of FM0 RFID signals," Proceedings of 2011 IEEE International Conference on RFID, April 2011.

12. Fyhn, K., R. M. Jacobsen, P. Popovski, A. Scaglione, and T. Larsen, "Multipacket reception of passive UHF RFID Tags: A communication theoretic approach," IEEE Transactions on Signal Processing, Vol. 59, No. 9, 4225-4237, 2011.
doi:10.1109/TSP.2011.2159499

13. Khasgiwale, R. S., R. U. Adyanthaya, and D. W. Engels, "Extracting information from tag collisions," Proceedings of 2009 IEEE International Conference on RFID, April 2009.

14. Sample, A., et al., "Design of an RFID-based battery-free programmable sensing platform," IEEE Transactions on Instrumentation and Measurement, 2608-2615, 2008.
doi:10.1109/TIM.2008.925019

15. Buettner, M. and D. Wetherall, "A software radio-based UHF RFID Reader for PHY/MAC experimentation," Proceedings of 2011 IEEE International Conference on RFID, April 2011.

16. Michael Buettner, Gen2 RFID Reader project page, https://www.cgran.org/wiki/Gen2/..

17. Ettus Research LLC, http://www.ettus.com/products/., .

18. GNU Radio, http://gnuradio.org/., .

19. Catarinucci, L., D. De Donno, M. Guadalaupi, F. Ricciato, and L. Tarricone, "Performance analysis of passive UHF RFID Tags with GNU radio," IEEE International Symposium on Antennas and Propagation (APSURSI), 541-544, Spokane, WA, USA, July 2011.

20. Catarinucci, L., D. De Donno, R. Colella, F. Ricciato, and L. Tarricone, "A cost-effective SDR platform for performance charac- terization of RFID Tags," IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 4, 903-911, April 2012.
doi:10.1109/TIM.2011.2174899

21. De Donno, D., F. Ricciato, L. Catarinucci, A. Coluccia, and L. Tarricone, "Challenge: Towards distributed RFID sensing with software-defined radio," ACM MobiCom, September 2010.

22. De Donno, D., F. Ricciato, L. Catarinucci, A. Coluccia, and L. Tarricone, "Design and applications of a software-defined listener for UHF RFID systems," ACM MobiCom, September 2010.

22. De Donno, D., F. Ricciato, L. Catarinucci, and L. Tarricone, "Design and applications of a software-defined listener for UHF RFID systems," IEEE MTT-S International Microwave Symposium Digest, June 2011.

23. Schoute, F. C., "Dynamic frame length aloha," IEEE Transactions on Communications, Vol. 31, No. 4, 565-568, 1983.
doi:10.1109/TCOM.1983.1095854

24. "Efficient object identification with passive RFID Tags," PERVASIVE 2002 --- Lecture Notes in Computer Science (LNCS), Vol. 2414, 2002.

25. Floerkemeier, C., "Bayesian transmission strategy for framed ALOHA based RFID protocols," Proceedings of 2007 IEEE International Conference on RFID, Grapevine, TX, USA, 2007.

26. Eom, J. B. and T. J. Lee, "Accurate tag estimation for dynamic framed slotted ALOHA in RFID systems," IEEE Communication Letters, Vol. 14, No. 1, 60-62, 2010.
doi:10.1109/LCOMM.2010.01.091378