Vol. 20

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2010-04-15

A Divergence-Free BEM Method to Model Quasi-Static Currents: Application to MRI Coil Design

By Clemente Cobos Sanchez, Salvador Gonzalez Garcia, Luis Diaz Angulo, Carlos Moreno De Jong Van Coevorden, and Amelia Rubio Bretones
Progress In Electromagnetics Research B, Vol. 20, 187-203, 2010
doi:10.2528/PIERB10011504

Abstract

The modeling of quasi-static optimization problems often involves divergence-free surface current densities. In this paper, a novel technique to implement these currents by using the boundary element method framework is presented. A locally-based characterization of the current density is employed, to render a fully geometry-independent formulation, so that it can be applied to arbitrary shapes. To illustrate the versatility of this approach, we employ it for the design of gradient coils for MRI, providing a solid mathematical framework for this type of problem.

Citation


Clemente Cobos Sanchez, Salvador Gonzalez Garcia, Luis Diaz Angulo, Carlos Moreno De Jong Van Coevorden, and Amelia Rubio Bretones, "A Divergence-Free BEM Method to Model Quasi-Static Currents: Application to MRI Coil Design," Progress In Electromagnetics Research B, Vol. 20, 187-203, 2010.
doi:10.2528/PIERB10011504
http://jpier.org/PIERB/pier.php?paper=10011504

References


    1. Bandelier, B., C. Daveau, P. Haghi Ashtiani, A. Rais, and F. Rioux-Damidau, "Use of stream functions for the computation of currents in thin circuits determination of the impedances," IEEE Transactions on Magnetics, Vol. 36, No. 4, 760-764, 2000.
    doi:10.1109/20.877558

    2. Zacharopoulos, A., S. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, "3D shape reconstruction in optical tomography using spherical harmonics and BEM," PIERS Online, Vol. 2, No. 1, 48-52, 2006.

    3. Ruan, B. and Y. Wang, "New topography inversion using EM field," Progress In Electromagnetics Research, Vol. 1, No. 1, 79-83, 2005.

    4. Peeren, G. N., "Stream function approach for determining optimal surface currents," Journal of Computational Physics, Vol. 191, No. 1, 305-321, 2003.
    doi:10.1016/S0021-9991(03)00320-6

    5. Turner, R. and Gradient coil design: A review of methods, "Magn. Reson. Imaging,", Vol. 11, 903-920, 1993.

    6. Li, X., D. Xie, and J. Wang, "A novel target field method for designing uniplanar self-shield gradient coils of fully open MRI device," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1635-1644, 2007.

    7. Hong, L. and D. Zu, Shimming permanent magnet of MRI scanner, Progress In Electromagnetics Research Symposium, Vol. 3, No. 6, 859-864, 2007.

    8. Pissanetzky, S., "Minimum energy MRI gradient coil of general geometry," Measurement of Science Technology, Vol. 3, 667-673, 1992.
    doi:10.1088/0957-0233/3/7/007

    9. Lemdiasov, R. A. and R. Ludwig, "A stream function method for gradient coil design," Concepts in Magnetic Resonance Part B: Magnetic Resonance Engineering, Vol. 26B, No. 1, 67-80, 2005.
    doi:10.1002/cmr.b.20040

    10. Marin, L., H. Power, R. W. Bowtell, C. Cobos Sanchez, A. A. Becker, P. Glover, and I. A. Jones, "Boundary element method for an inverse problem in magnetic resonance imaging gradient coils," Computer Methods in Engineering & Sciences, 2007.

    11. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1962.

    12. Pars, F. and J. Canas, Boundary Element Method: Fundamentals and Applications, Oxford Science Publications, 1997.

    13. Brebbia, C. A., J. F. C. Telles, and L. C. Wrobel, Boundary Element Techniques, Springer-Verlag, 1984.

    14. Holland, R., "Finite-difference solution of Maxwell's equations in generalized nonorthogonal coordinates ," IEEE Trans. Nucl. Sci., Vol. NS-30, 4586-4591, 1983.

    15. Pozrikidis, C., A Practical Guide to Boundary-element Methods with the Software Library BEMLIB , Chapman & Hall/CRC, 2002.

    16. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization , Academic Press, London, 1981.

    17. Tiknonov, A. N. and V. Y. Arsenin, Methods for Solving Ill-posed Problems, Nauka, Moscow, 1986.

    18. Goharian, M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3D electrical impedance tomography inverse problem using experimental data ," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
    doi:10.2528/PIER09052003

    19. Brideson, M. A., L. K. Forbes, and S. Crozier, "Determining complicated winding patterns for shim coils using stream functions and the target-field method," Concepts in Magnetic Resonance, Vol. 14, No. 1, 9-18, 2002.
    doi:10.1002/cmr.10000

    20. Qi, F., X. Tang, Z. Jin, L. Wang, D. Zu, and W. Wang, A new target ¯eld method for optimizing longitudinal gradient coils' property , Progress In Electromagnetics Research Symposium, Vol. 3, No. 6, 865-869, 2007.

    21. Eibert, T. F. and V. Hansen, "On the calculation of potential integrals for linear source distributions on triangular domains," IEEE Transactions on Antennas and Propagation, Vol. 43, No. 12, 1499-1502, 1995.
    doi:10.1109/8.475946

    22. Marin, L., H. Power, R. W. Bowtell, C. Cobos Sanchez, A. A. Becker, P. Glover, and I. A. Jones, "Numerical solution for an inverse MRI problem using a regularized boundary element method," (Special Issue) Engineering Analysis with Boundary Elements, 2007.

    23. Kamon, M., M. J. Tsuk, and J. K. White, "Fasthenry: A multipole-accelerated 3-D inductance extraction program," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1750-1758, 1994.
    doi:10.1109/22.310584