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Abstract—The modeling of quasi-static optimization problems often
involves divergence-free surface current densities. In this paper, a novel
technique to implement these currents by using the boundary element
method framework is presented. A locally-based characterization of
the current density is employed, to render a fully geometry-independent
formulation, so that it can be applied to arbitrary shapes. To illustrate
the versatility of this approach, we employ it for the design of gradient
coils for MRI, providing a solid mathematical framework for this type
of problem.

1. INTRODUCTION

Many problems in engineering require to determine the spatial
distribution of electric currents flowing in a conductive surface which
satisfies given requirements for the fields, electromagnetic energy, etc.
they produce. The reconstruction of current distribution on the
conducting surface subjected to these constraints can be seen as an
inverse problem. An appropriate and realistic formulation of this type
of problems is presented in this paper, by incorporating a suitable
model of the current under search, in terms of the stream function,
into the Boundary Element Method (BEM).

The use of stream function for the characterization of surface
current densities has been widely employed [1]. The BEM has been
proved to be an excellent tool in the solution of electromagnetic
problems [2, 3]; and the incorporation of the stream function into
a numerical computational technique, such us BEM, has also
been already considered for the solution of electromagnetic inverse
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problems [4]. A relevant application of this topic is the design of
gradient coils for magnetic resonance imaging (MRI). MRI is a non-
invasive medical technique, which relies on the use of well defined and
controlled magnetic fields, with given gradients to encode spatially
the signals from the sample. These field gradients are generated by
wire coils usually placed on cylindrical surfaces (although other coil
geometries [5, 6] or even permanent magnet can be also employed [7]).

The problem in gradient coil design is to find optimal positions
for the multiple windings of coils so as to produce fields with the
desired spatial dependence and properties [5] (low inductance, high
gradient to current ratio, minimal resistance, and good field gradient
uniformity). Hence coil design is then an electromagnetic inverse
problem which can be formulated as a constrained optimization, for
which the inverse BEM method has been successfully employed [8, 9].
Stream-function based current models for coil design were proposed
in [10], though only valid up to second-order since the current
became non-divergent for higher orders. A formulation for quasi-
static electromagnetic topological optimization problems involving
good conductors for simple quadrilateral meshes can also be found
in [4].

In this paper, we present a novel technique to model a quasi-
static current density over a given conducting surface for optimization
problems. This approach relies on the BEM mathematical framework,
as the boundary of the conducting surface is discretized into triangular
patches, on which the involved magnitudes are approximated and
solved keeping the divergence-free nature up to arbitrary order. We
characterize the current through the stream function, given in terms
of specific functions locally based, so that the resulting formulation is
completely geometry-independent, and can be applied to any current-
carrying surface. To demonstrate the power and versatility of our
method, we provide an overview of the design of a cylindrical transverse
gradient coil for MRI applications. Numerical examples of the
coil performance are presented to demonstrate the efficiency of the
proposed technique for solving this type of inverse problems.

Although application of our method is illustrated with design
of gradient coil for MRI, it is aimed to be a general approach well
suited for any electromagnetic inverse problems under low-frequency
conditions or applications where a linear or quadratic functional, such
as the energy or dissipation, has to be optimized. This technique can
also be formulated for any order of element; here it is illustrated for
linear and quadratic interpolation.
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2. FUNDAMENTALS

2.1. Stream Function: BEM Formulation

An electric current density, J, flowing on PEC surface must satisfy two
main conditions

i) J must flow on the coil surface. That is

J · n = 0. (1)

where n is the local unit surface vector.
ii) The current density, J, must be divergence-free [11]

∇ · J = 0, (2)

so that it obeys the continuity equation over the coil surface in
the quasi-static domain.

Since J is a divergence-free vector, it can be expressed as the curl
of another vector perpendicular to the surface where the current flows

J(r) = ∇× [
ϕ(r) n(r)

]
, (3)

where n(r) is a unit vector normal to the surface, and ϕ is usually
referred to as the stream function [9].

BEM requires the discretization of the bounding surfaces into
surface elements. Let us assume that the surface, S, on which we
want to find the optimal current, is divided into T triangular elements
(not necessarily flat)

S =
T⋃

t=1

St (4)

with N nodes, {rn}N
n=1, lying at each vertex of the element (and at the

mid-point of each side for quadratic curved elements and extra points
for higher elements [12]).

Let us now define

N2T, which maps the nth-node, rn to the set of elements

N2T (rn) = {Sni}Ω
i=1 (5)

where Ω is the number of elements for which rn is a node.
T2N, which maps a given element, St with its nodes

T2N(St) = {rti}Λ
i=1 (6)

where Λ is the number of nodes in the element.
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Finally, we will define the shape functions [12, 13] to express the
position of a point placed at one element, r ∈ St, in terms of the
coordinates of the nodes of this element, T2N(St) = {rti}Λ

i=1

r =
Λ∑

i

rtiN
ti(r). (7)

Each shape function, N ti, is associated with one node rti, and it must
satisfy a interpolation condition: It takes the unit value when evaluated
at this node and is zero at the other nodes

N ti(rtj) = δi,j . (8)

These shape functions can also be employed to expand the
functions defined within the element in terms of their nodal values

ϕ(r) =
Λ∑

i

ϕtiN
ti(r) (9)

where ϕti = ϕ(rti). It bears noting that the interpolations used
to describe the geometry and the variation of the function with the
space (and hence the shape function used to describe each of them)
can be different for a given element. For instance, we can consider
shape functions of first order to represent the geometry (six-node
flat element), and second-order shape functions to describe ϕ on the
element. Isoparametric representations arise when the order of both
interpolations are the same.

Let us denote the nodal values at of the stream function used to
express current density on the surface (3) by In

ϕ(rn) = In, ∀n = 1, . . . , N. (10)

The value of the stream function for a given point r in the tth-element,
r ∈ St can be expressed as a linear combination of the nodal values of
the element where the point is located

ϕ(r) =
Λ∑

i=1

N ti
t (r)Iti. (11)

The above sum can also be expressed as a sum over all the nodes

ϕ(r) =
N∑

n=1

N n(r)In (12)

by defining a generalized function N n related to the nth-node

N n(r) =
{

0 if rn /∈ St

Nn
t (r) if rn ∈ St

(13)
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Figure 1. (a) T2N(St) for a linear flat element (Λ = 3); (b) T2N(St)
for a quadratic element (Λ = 6). The N2T (rn) function relates a given
node rn with the elements to which it belongs; (c) flat linear elements.

and Nn
t (r) is the shape function associated to the same node rn in the

element St. According to the definition above, for any r

N n(r) = 0, unless r ∈ {Sni}Ω
i=1 = N2T (rn). (14)

Also it should be stressed that although In is a fixed value for a given
node, the function Nn

t (r) associated to the nth-node, depends on the
element in which r lies.

In order for the current to be stationary no net flux should flow
into or out the conducting surface. Thus a common value of the stream
function for all nodes belonging to the same edge on the boundary,
must be enforced. The stream function so defined is continuous, and
can be replaced into Eq. (3) to find the current density as

J(r) =
N∑

n=1

In∇× [N n(r) n(r)]. (15)

If we introduce the current basis vector associated to the nth-node as

n(r) = ∇× [N n(r) n(r)], (16)

then

J(r) =
N∑

n=1

In n(r), (17)

where

n(r) =
{

0 if rn /∈ St

∇× [Nn
t (r) n(r)] if rn ∈ St

(18)
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so that
n(r) = 0, unless r ∈ N2T (rn). (19)

Note that n(r) varies depending on the element in which r lies. The
set of all possible values that n(r) can take in its associated elements
N2T (rn) = {Sni}Ω

i=1, is termed the current element (Fig. 2(b)).
This current density satisfies the required conditions specified in

Eqs. (1)–(2). It is seen clearly that J lies on the surface and also it is
straightforwardly divergence-free

∇ · J(r) =
N∑

n=1

In ∇ · n(r) = 0 (20)

since
∇ · n(r) = ∇ ·

[
∇× [N n(r) n(r)]

]
= 0. (21)

The current density at r can be equivalently defined in terms of a linear
combination of the basis function associated to the element where r lies
(Fig. 2(a)), where the weights are the stream function’s nodal values

J(r) =
Λ∑

i=1

Iti ti(r). (22)

Although Eq. (22), provides a simple expression for the current,
Eq. (17) is the employed for the numerical implementations of this
paper, as it presents a more convenient form for optimization purposes.
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Figure 2. (a) Current basis vectors in one flat element; (b) current
basis vector associated to the nth-node n(r) (its value depends on the
particular element which r lies in).



Progress In Electromagnetics Research B, Vol. 20, 2010 193

2.2. Current Basis in Generalized Coordinates

The current basis vectors are found by computation of the curl of the
shape functions. Let assume a non-orthogonal coordinate system [15],
locally defined at each element, by three axis with tangential vectors
in the directions of the ξ or η, plus and the outward direction normal
to the surface element (Fig. 3).

The components of the curl are given by [14]

[∇× [Nn(ξ, η) n(ξ, η)]]ξ =
√

g11

g

[
∂(Nn(ξ, η)/

√
g33)

∂η

]
(23)

[∇× [Nn(ξ, η) n(ξ, η)]]η = −
√

g22

g

[
∂(Nn(ξ, η)/

√
g33)

∂ξ

]
(24)

where g is the determinant of the metric, and

gij =
3∑

k=1

∂xk

∂ξi

∂xk

∂ξj
(25)

The following notation has been used x1 = x, x2 = y and x3 = z
for cartesian; ξ1 = ξ, ξ2 = η and ξ3 for the normal coordinate in the
parametric space. The metric tensor which can be written as

g =

(
ξ · ξ ξ · η 0
η · ξ η · η 0

0 0 1

)
(26)

where
ξ =

∂r
∂ξ

; η =
∂r
∂η

. (27)
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Figure 3. Coordinates system (ξ, η) for (a) flat elements and (b)
quadratic curved element.
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Therefore according to Eqs. (23)–(24), the current basis ti are easily
obtained if the metric and the derivatives of the shape functions are
knowns. Let us illustrate this result with examples of the current
associated with different variations of ϕ within the elements.

For flat elements
ξ = rt1 − rt3; η = rt2 − rt3. (28)

and
g1/2 = 2A. (29)

where A is the area of the element. The complete calculation of the
basis making use of the derivative of the shape functions is found in
Appendix A.

If we consider an isoparametric linear approximation the ti are
(see Fig. 2(a))

t1 = −(rt2 − rt3)
2A

; t2 =
(rt1 − rt3)

2A
;

t3 =
(rt2 − rt3)

2A
− (rt1 − rt3)

2A
.

(30)

It should be mentioned that the use of isoparametric linear
representation leads to a constant current over the element, as
expected, since the current is described by one order less than the
stream function approximation. In addition, we can see that this result
is equivalent to Pissanetzky’s [8] local description of the current.

Next we consider linear elements and quadratic shape functions
for the stream function description over the element. So as in the
foregoing case we are dealing with linear flat elements. But this time
to describe a quadratic behavior of ϕ within the element we use second
order shape functions (Λ = 6, see Appendix A). Therefore although
we only need the three triangle vertices to describe the geometry, to
represent a quadratically varying stream function the mid-points must
also be considered producing a six-node flat triangle. To compute the
current basis, we evaluate the curl of the shape functions of the second
order that describe the stream function. The current basis functions
are thus†

t1(ξ, η) = −(4ξ − 1)
(rt2 − rt3)

2A
; (31)

t2(ξ, η) = (4η − 1)
(rt1 − rt3)

2A
; (32)

t3(ξ, η) = (1− 4ζ)
[
(rt1 − rt3)

2A
− (rt2 − rt3)

2A

]
; (33)

† A proof of the divergence free condition of these function can be easily given in the
parametric space: ∇ξ,η · ti(ξ, η) = 0.
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t4(ξ, η) = 4ξ
(rt1 − rt3)

2A
− 4η

(rt2 − rt3)
2A

; (34)

t5(ξ, η) = 4(ζ − η)
(rt1 − rt3)

2A
+ 4η

(rt2 − rt3)
2A

; (35)

t6(ξ, η) = −4ξ
(rt1 − rt3)

2A
− 4(ζ − ξ)

(rt2 − rt3)
2A

. (36)

Analogously in the case of a isoparametric quadratic formulation
BEM, the current basis vectors can be computed by using the
derivatives of the shape functions employed in the previous case,
although a different metric must be used, which can be easily found
from the tangential vectors ξ and η for quadratic curved elements

ξ =
∂r
∂ξ

= (4ξ − 1)r1 + (1− 4ζ)r3 + 4ηr4 − 4ηr5 + 4(ζ − ξ)r6 (37)

η =
∂r
∂η

= (4η − 1)r2 + (1− 4ζ)r3 + 4ξr4 + 4(ζ − η)r5 − 4ξr6 (38)

3. NUMERICAL APPLICATION: DESIGN OF MRI
GRADIENT COILS

In this section we apply the above described method to the design of a
cylindrical gradient coil for MRI. The goal is to find an optimal current
distribution over a given conducting surface so as to achieve a desired
magnetic field in a region of interest (ROI), to balance the torque
experienced ‡ by the current density in an applied static magnetic field
and to minimize the magnetic stored energy.

In our case, a cylindrical surface is considered, with a radius of
0.5m and a length of 2 m, on which we need to calculate the surface
currents, which create a target field in the ROI with a linear variation
of Bz along x, and a gradient strength G = 1Tm−1. The desired ROI
for gradient uniformity is taken as a uniform distribution of 400 points
spread over a sphere of radius 0.18 m. (Fig. 4).

According to these requirements we can define the following
quadratic programming (QP) problem [16], in which a quadratic
function (or Lagrangian) of several variables, which are subject to
linear constraints, must be minimized

F =
1
2

K∑

k=1

[Bz(rk)−Bdes,z]2 + αWmagn (39)

‡ For the sake of clarity the torque term is omitted in the following formulation, as
geometries with axial symmetry will experience no net torque in the presence of a z-directed
field.



196 Sanchez et al.

-0.5

0

0.5 -0.5 0 0.5

-1

-0.5

0

0.5

1

(a)

-0.5

0

0.5 -0.5 0 0.5

-1

-0.5

0

0.5

1

(b)

Figure 4. Cylinder meshed using (a) 160 flat elements (b) and using
160 quadratic curved elements. The ROI is formed from a spherical
distribution of 400 points (in red) at the centre of the figure; and the
nodes at the edges are marked in black.

here Bdes,z is the z-component of the desired field over a set of K points
in the ROI. Bz is the actual field, α is the weight for the the magnetic
energy, Wmagn.

The coefficient α can be interpreted as a regularization parameter,
which is chosen so that the magnetic field deviates by less than a given
value, ∆Bz(r) ≤ 5% over the ROI. This parameter, then, allows control
of the coil properties, and illustrates the trade-off between coil features.
The coefficient α can also be seen as a regularization parameter [17, 18].

Now the current-carrying surface has to be meshed into T
triangular elements St with N nodes, {rn}N

n=1. Applying the
divergence-free current technique previously described, we find the
discretized versions of the functions involved in the problem.

For instance, the Bz produced by the current distribution can be
expressed as

Bz(r) =
N∑

n=1

Inbn
z (r), (40)

where bn
z is the z-component of the magnetic induction produced by

the current element associated to the nth-node

bn
z (r) =

µ0

4π

Ω∑

i=1

∫

Sni

ny (r′) (x− x′)− nx (r′) (y − y′)
|r− r′|3 dS′. (41)

The coefficient bn
z (r) includes integrals that usually cannot be

solved analytically, so a numerical integration procedure has to be
adopted. As the field point, r, is never at the surface, the integrals
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involved are non-singular and can be easily computed using Gaussian
quadrature [13].

Analogously the magnetic energy in the coil can be written as

Wmag =
µ0

8π

∫

S

∫

S′

J(r)J(r′)
|r− r′| dSdS′ =

1
2

N∑

n=1

N∑

m=1

InImLmn (42)

where Lmn is the mutual inductance between the mth and nth current
elements

Lmn =
µ0

4π

Ω∑

i=1

Ω∑

j=1

∫

Sni

∫

Smj

n(r) · m (r′)
|r− r′| dSdS′. (43)

The double integral involved in the definition of the components,
Lmn, of the inductance matrix shows a singular behavior when m = n.
Analytical expressions for these singular double integrals have been
presented in [21] for linear isoparametric elements, although a general
approach for dealing with these type of double weak singular integrals
is given in [22]. This is based on a transformation into a local polar
coordinate system where the integration can be performed by avoiding
the singularity.

The incorporation of the discretized versions of the functions
into the problem, leads to the functional F(I) (39), where I =
(I1, I2, . . . , IN ) are the set of the stream function nodal values. The
function F(I) can now be minimized by finding the parameters which
make

∂F(I)
∂Ip

= 0; p = 1, . . . , N. (44)

and so we obtain the optimal stream function values that minimize the
functional.

The inverse problem finishes with the identification of the optimal
nodal values of the stream function, which allow us to construct
the discretized version of the current density over the surface, that
produces the desired field variation and satisfies the other imposed
constraints. However, the final goal in coil design is to find the wire
arrangement that approximates the continuous current distribution.
The conversion of the current solution into a conductor pattern is
achieved by contouring the stream function [19, 20].

4. RESULTS

A transverse coil has been designed with the proposed model by using
an isoparametric quadratic interpolation. Fig. 5 shows the stream-
function, for the X-gradient coil plot over the cylindrical surface
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geometry, and how the wires of the gradient coil are obtained by
contouring the stream function (red wires indicate reversed current
flow with respect to blue). These wire arrangements when energized
produce the Bz field displayed in Fig. 6. Field magnitudes were
calculated using the elemental Biot-Savart expression applied directly
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Figure 5. Stream function over the coil surface and wire arrangement
(stream lines). Note that ϕ is normalized to unity since its scale is
unimportant for contouring purposes. We choose a number of contour
levels Nc = 10 that are equally spaced [4] (Brideson et al. [19] proved
that equally spaced contours of ϕ give an approximation to J).
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Figure 6. Contours of the Bz field produced by the wire arrangement
Fig. 5. The grey line delineates the region where the field deviates by
less than 5% from linearity. The points where the field is evaluated in
the ROI are shown in black. The target field employed is Bz(r) = Gxx,
where the gradient proportionality constant has been considered as
Gx = 1 T/m. The current intensity carried by the coil to produced
this field is then I = 24.53 kA.
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to the wire paths. Integrating also over the wire-paths the torque
experienced by the coil can also be found. For this example it is
less than 10−6 NmA−1T−1. Using FastHenry c© [23], a multipole
impedance extraction tool, and assuming the coil wires have a 3 mm
diameter, the value of the inductance is found to be 235µH for this
case, which yields the following performance parameter (FOM) [5]

η2

L
= 9.6× 10−6 T 2m−2A−2H−1. (45)

4.1. Study of the Convergence

The coil design problem presented can be tackled by application of any
of the different order of approximation in BEM that were illustrated
in the Section 2.2. The efficacy of employing curved rather than flat
element geometry and linear rather than parabolic approximation of
the stream function over the element is now explored by performing
a mesh convergence study, that is, we study the solutions of every
BEM approximation for different mesh densities (number of elements).
We applied this study to the design of cylindrical transverse and
longitudinal gradient coils, where the radius of the coil cylinder was
0.40m and its total length 1.60 m.

Figure 7(a) shows that the quadratic (red line) and linear (blue
line) isoparametric solutions converge to the same value for the simple
problem of a cylindrical transverse gradient coil. The convergence
for the case of flat triangles with a parabolic stream function (green
line), is faster than in the other two cases. Fig. 7(b) displays another
convergence plot in terms of the FOM for a longitudinal gradient coil.
The parabolic isoparametric approximation exhibits a higher rate of
convergence with increasing number of elements, that is, convergence
occurs for a smaller number of elements. It is worth noting that for
the two previous cases, there seems to be a residual error between the
convergence of solutions using flat elements and curved elements.

For both problems, all the BEM approximations produce effective
solutions and a finer mesh results in a more accurate solution. The
particular BEM approximation for which convergence occurs at the
smallest number of elements will depend on the particular problem.
However, as a mesh is made finer, the computation time increases as
shown in Fig. 7(c). As expected the computation time grows with
the number of elements and is always higher for curved triangles and
parabolic interpolations.
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Figure 7. (a) Convergence study in terms of the FOM
(a−5T 2m−2A−2H−1) for a cylindrical transverse gradient coil
(height = 1.6m and radius = 0.4m), the linear and quadratic
isoparametric solutions are shown in blue (diamond marker) and
red (circle marker) respectively. The green line (square marker)
displays the solution for flat elements with quadratic evolution of ϕ;
(b) convergence study for a cylindrical longitudinal gradient coil of
similar geometry; (c) computation time for different numbers of surface
elements.

5. CONCLUSION

A new technique to model realistic quasi-static currents has been
proposed and evaluated. The method provides a new framework for
solving inverse electromagnetic problems, it can be seen as an inverse
boundary element method which is geometry-independent and so it
can be applied a wide variety of shapes and geometries.

The current can be reconstructed with any order of interpolation,
as it is locally characterized in each mesh element through a set of
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vectors (current basis) that can be related to the curl of the shape
functions used to describe the variation of the stream function.

Here it has been evaluated for gradient coil design, allowing the
production of efficient torque-balanced coils of minimum inductance.

APPENDIX A. SHAPE FUNCTIONS

This Appendix provides the first and second order shape functions and
their derivatives in parametric coordinates.

A.1. Linear Shape Functions

The first order shape functions are

N1(ξ, η) = ξ; N2(ξ, η) = η; N3(ξ, η) = 1− η − ξ. (A1)

with ξ, η ∈ [0, 1].
Derivatives of the shape functions
∂N1(ξ, η)

∂ξ
= 1;

∂N2(ξ, η)
∂ξ

= 0;
∂N3(ξ, η)

∂ξ
= −1;

∂N1(ξ, η)
∂η

= 0;
∂N2(ξ, η)

∂η
= 1;

∂N3(ξ, η)
∂η

= −1
(A2)

A.2. Quadratic Shape Functions

Second order shape functions, (Λ = 6), in the parametric space are
given by

N1(ξ, η) = ξ(2ξ − 1); N4(ξ, η) = 4ξη;

N2(ξ, η) = η(2η − 1); N5(ξ, η) = 4ζη;

N3(ξ, η) = ζ(2ζ − 1); N6(ξ, η) = 4ξζ,

(A3)

where ζ = 1− η − ξ, and ξ, η ∈ [0, 1].
Derivatives of the shape functions

∂N1(ξ, η)
∂ξ

= 4ξ − 1;
∂N2(ξ, η)

∂ξ
= 0;

∂N3(ξ, η)
∂ξ

= 1− 4ζ;

∂N4(ξ, η)
∂ξ

= 4η;
∂N5(ξ, η)

∂ξ
= −4η;

∂N6(ξ, η)
∂ξ

= 4(ζ − ξ)

∂N1(ξ, η)
∂η

= 0;
∂N2(ξ, η)

∂η
= 4η − 1;

∂N3(ξ, η)
∂η

= 1− 4ζ;

∂N4(ξ, η)
∂η

= 4ξ;
∂N5(ξ, η)

∂η
= 4(ζ − η);

∂N6(ξ, η)
∂η

= −4ξ

(A4)
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