Vol. 173

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

On Fresnel-Airy Equations, Fabry-Perot Resonances and Surface Electromagnetic Waves in Arbitrary Bianisotropic Metamaterials

By Maxim Durach, Robert Williamson, Jacob Adams, Tonilynn Holtz, Pooja Bhatt, Rebecka Moreno, and Franchescia Smith
Progress In Electromagnetics Research, Vol. 173, 53-69, 2022


We introduce a theory of optical responses of bianisotropic layers with arbitrary effective medium parameters, which results in generalized Fresnel-Airy equations for reflection and transmission coefficients at all incidence directions and polarizations. The poles of these equations provide explicit expressions for the dispersion of Fabry-Perot resonances and surface electromatic waves in bianisotropic layers and interfaces. The existence conditions of these resonances are topologically related to the zeros of the high-k characteristic function h(k)=0 of bulk bianisotropic materials and taxonomy of bianisotropic media according to the hyperbolic topological classes [32, 33].


Maxim Durach, Robert Williamson, Jacob Adams, Tonilynn Holtz, Pooja Bhatt, Rebecka Moreno, and Franchescia Smith, "On Fresnel-Airy Equations, Fabry-Perot Resonances and Surface Electromagnetic Waves in Arbitrary Bianisotropic Metamaterials," Progress In Electromagnetics Research, Vol. 173, 53-69, 2022.


    1. Sihvola, A., I. Semchenko, and S. Khakhomov, "View on the history of electromagnetics of metamaterials: Evolution of the congress series of complex media," Photonics and Nanostructures - Fundamentals and Applications, Vol. 12, No. 4, 279-283, 2014.

    2. Tretyakov, S. A., F. Bilotti, and A. Schuchinsky, "Metamaterials congress series: Origins and history," 2016 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), 361-363, IEEE, 2016.

    3. Mackay, T. G. and A. Lakhtakia, Electromagnetic Anisotropy and Bianisotropy: A Field Guide, World Scientific, 2010.

    4. Cheng, D. K. and J. A. Kong, "Covariant descriptions of bianisotropic media," Proceedings of the IEEE, Vol. 56, No. 3, 248-251, 1968.

    5. Cheng, D. K. and J. A. Kong, "Time-harmonic fields in source-free bianisotropic media," Journal of Applied Physics, Vol. 39, No. 12, 5792-5796, 1968.

    6. Kong, J. A., Electromagnetic Wave Theory, Wiley-Interscience, 1990.

    7. Lindell, I., A. Sihvola, S. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.

    8. Röntgen, W. C., "Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft," Annalen der Physik, Vol. 271, No. 10, 264-270, 1888.

    9. Wilson, H. A., "On the electric effect of rotating a dielectric in a magnetic field," Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, Vol. 204, No. 372-386, 121-137, 1905.

    10. Chen, H. C., Theory of Electromagnetic Waves: A Coordinate-free Approach, McGraw-Hill, 1983.

    11. Landau, L. D. and E. M. Lifshitz, Electrodynamics of Continuous Media. Theoretical Physics, Vol. 8, 51, Fizmatlit, 2005.

    12. Dzyaloshinskii, I. E., J. Exp. Theoret. Phys., Vol. 37, 881, 1959 [translation: Soviet Phys. - JETP, Vol. 10, 628, 1960].

    13. Astrov, D. N., J. Exp. Theoret. Phys., Vol. 38, 984, 1960 [translation: Soviet Phys. - JETP, Vol. 11, 708, 1960].

    14. Rado, G. T. and V. J. Folen, Phys. Rev. Letters, Vol. 7, 310, 1961.

    15. Rado, G. T. and V. J. Folen, "Magnetoelectric effects in antiferromagnetics," Proceedings of the Seventh Conference on Magnetism and Magnetic Materials, 1126-1132, Springer, 1962.

    16. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.

    17. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, No. 5781, 1777-1780, 2006.

    18. Boston, S. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Physical Review D, Vol. 91, No. 12, 124035, 2015.

    19. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Physics Letters A, Vol. 374, No. 23, 2305-2308, 2010.

    20. Smolyaninov, I. I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Physical Review Letters, Vol. 105, No. 6, 067402, 2010.

    21. Simovski, C. and S. Tretyakov, An Introduction to Metamaterials and Nanophotonics, Cambridge University Press, 2020.

    22. Noginov, M. A. and V. A. Podolskiy (eds.), Tutorials in Metamaterials, CRC Press, 2011.

    23. Engheta, N. and R. W. Ziolkowski (eds.), Metamaterials: Physics and Engineering Explorations, John Wiley & Sons, 2006.

    24. Noginov, M. A., G. Dewar, M. W. McCall, and N. I. Zheludev, Tutorials in Complex Photonic Media, SPIE Press, 2009.

    25. Tretyakov, S. A., "A personal view on the origins and developments of the metamaterial concept," Journal of Optics, Vol. 19, No. 1, 013002, 2016.

    26. Kong, J. A., "Theorems of bianisotropic media," Proceedings of the IEEE, Vol. 60, No. 9, 1036-1046, 1972.

    27. Berry, M., "The optical singularities of bianisotropic crystals," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 461, No. 2059, 2071-2098, 2005.

    28. Bateman, H., "Kummer's quartic surface as a wave surface," Proceedings of the London Mathematical Society, Vol. 2, No. 1, 375-382, 1910.

    29. Baekler, P., A. Favaro, Y. Itin, and F. W. Hehl, "The Kummer tensor density in electrodynamics and in gravity," Annals of Physics, Vol. 349, 297-324, 2014.

    30. Favaro, A. and F. W. Hehl, "Light propagation in local and linear media: Fresnel-Kummer wave surfaces with 16 singular points," Physical Review A, Vol. 93, No. 1, 013844, 2016.

    31. Mulkey, T., J. Dillies, and M. Durach, "Inverse problem of quartic photonics," Optics Letters, Vol. 43, No. 6, 1226-1229, 2018.

    32. Durach, M., R. F. Williamson, M. Laballe, and T. Mulkey, "Tri-and tetrahyperbolic isofrequency topologies complete classification of bianisotropic materials," Applied Sciences, Vol. 10, No. 3, 763, 2020.

    33. Durach, M., "Tetra-hyperbolic and tri-hyperbolic optical phases in anisotropic metamaterials without magnetoelectric coupling due to hybridization of plasmonic and magnetic Bloch high-k polaritons," Optics Communications, Vol. 476, 126349, 2020.

    34. Jessop, C. M., Quartic Surfaces with Singular Points, University Press, 1916.

    35. Weisstein, E. W., CRC Concise Encyclopedia of Mathematics, CRC Press, 2003.

    36. Kruk, S. S., J. W. Zi, E. Pshenay-Severin, K. O'Brien, D. N. Neshev, Y. S. Kivshar, and X. Zhang, "Magnetic hyperbolic optical metamaterials," Nature Commun., Vol. 7, No. 1, 1-7, 2016.

    37. Tuz, V. R., I. V. Fedorin, and V. I. Fesenko, "Bi-hyperbolic isofrequency surface in a magnetic-semiconductor superlattice," Optics Letters, Vol. 42, 4561, 2017.

    38. Tuz, V. R. and V. I. Fesenko, "Magnetically induced topological transitions of hyperbolic dispersion in biaxial gyrotropic media," Journal of Applied Physics, Vol. 128, 013107, 2020.

    39. Guo, Z., H. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulation to applications," Journal of Applied Physics, Vol. 127, No. 7, 071101, 2020.

    40. Takayama, O. and A. V. Lavrinenko, "Optics with hyperbolic materials," JOSA B, Vol. 36, No. 8, F38-F48, 2019.

    41. Aladadi, Y. T. and M. A. Alkanhal, "Extraction of tensor parameters of general biaxial anisotropic materials," AIP Advances, Vol. 10, No. 2, 025113, 2020.

    42. Arslanagić, S., T. V. Hansen, N. A. Mortensen, A. H. Gregersen, O. Sigmund, R. W. Ziolkowski, and O. Breinbjerg, "A review of the scattering-parameter extraction method with clarification of ambiguity issues in relation to metamaterial homogenization," IEEE Antennas and Propagation Magazine, Vol. 55, No. 2, 91-106, 2013.

    43. Chen, L., Z.-Y. Lei, R. Yang, X.-W. Shi, and J. Zhang, "Determining the effective electromagnetic parameters of bianisotropic metamaterials with periodic structures," Progress In Electromagnetics Research, Vol. 29, 79-93, 2013.

    44. Chen, X., B.-I. Wu, J. A. Kong, and T. M. Grzegorczyk, "Retrieval of the effective constitutive parameters of bianisotropic metamaterials," Physical Review E, Vol. 71, No. 4, 046610, 2005.

    45. Cheng, X., H. Chen, L. Ran, B.-I. Wu, T. M. Grzegorczyk, and J. A. Kong, "Negative refraction and cross polarization effects in metamaterial realized with bianisotropic S-ring resonator," Physical Review B, Vol. 76, No. 2, 024402, 2007.

    46. Cohen, D. and R. Shavit, "Bi-anisotropic metamaterials effective constitutive parameters extraction using oblique incidence S-parameters method," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2071-2078, 2015.

    47. Farahbakhsh, A., D. Zarifi, A. Abdolali, and M. Soleimani, "Technique for inversion of an inhomogeneous bianisotropic slab through an optimisation approach," IET Microwaves, Antennas & Propagation, Vol. 7, No. 6, 436-443, 2013.

    48. Hasar, U. C., G. Buldu, Y. Kaya, and G. Ozturk, "Determination of effective constitutive parameters of inhomogeneous metamaterials with bianisotropy," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 8, 3734-3744, 2018.

    49. Hasar, U. C., G. Ozturk, Y. Kaya, J. J. Barroso, and M. Ertugrul, "Simple and accurate electromagnetic characterization of omega-class bianisotropic metamaterials using the state transition matrix method," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 10, 7064-7067, 2021.

    50. Kraft, M., A. Braun, Y. Luo, S. A. Maier, and J. B. Pendry, "Bianisotropy and magnetism in plasmonic gratings," ACS Photonics, Vol. 3, No. 5, 764-769, 2016.

    51. Kriegler, C. E., M. S. Rill, S. Linden, and M. Wegener, "Bianisotropic photonic metamaterials," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 16, No. 2, 367-375, 2009.

    52. Li, Z., K. Aydin, and E. Ozbay, "Determination of the effective constitutive parameters of bianisotropic metamaterials from reflection and transmission coefficients," Physical Review E, Vol. 79, No. 2, 026610, 2009.

    53. Odit, M., P. Kapitanova, P. Belov, R. Alaee, C. Rockstuhl, and Y. S. Kivshar, "Experimental realisation of all-dielectric bianisotropic metasurfaces," Applied Physics Letters, Vol. 108, No. 22, 221903, 2016.

    54. Ozturk, G., U. C. Hasar, M. Bute, and M. Ertugrul, "Determination of constitutive parameters of strong-coupled bianisotropic metamaterials using oblique incidence scattering parameters," IEEE Transactions on Antennas and Propagation, Vol. 69, No. 2, 918-927, 2020.

    55. Achouri, K., M. A. Salem, and C. Caloz, "General metasurface synthesis based on susceptibility tensors," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 7, 2977-2991, 2015.

    56. Lannebère, S., S. Campione, A. Aradian, M. Albani, and F. Capolino, "Artificial magnetism at terahertz frequencies from three-dimensional lattices of TiO2 microspheres accounting for spatial dispersion and magnetoelectric coupling," JOSA B, Vol. 31, No. 5, 1078-1086, 2014.

    57. Liu, X.-X. and A. Alù, "Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach," Physical Review B, Vol. 87, No. 23, 235136, 2013.

    58. Liu, X.-X., Y. Zhao, and A. Alù, "Polarizability tensor retrieval for subwavelength particles of arbitrary shape," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 6, 2301-2310, 2016.

    59. Alaee, R., M. Albooyeh, M. Yazdi, N. Komjani, C. Simovski, F. Lederer, and C. Rockstuhl, "Magnetoelectric coupling in nonidentical plasmonic nanoparticles: Theory and applications," Physical Review B, Vol. 91, No. 11, 115119, 2015.

    60. Albooyeh, M., S. Tretyakov, and C. Simovski, "Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework," Annalen der Physik, Vol. 528, No. 9-10, 721-737, 2016.

    61. Belov, P. A., C. R. Simovski, and S. A. Tretyakov, "Example of bianisotropic electromagnetic crystals: The spiral medium," Physical Review E, Vol. 67, No. 5, 056622, 2003.

    62. Ciattoni, A. and C. Rizza, "Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality," Physical Review B, Vol. 91, No. 18, 184207, 2015.

    63. Fietz, C., "Electro-magnetostatic homogenization of bianisotropic metamaterials," JOSA B, Vol. 30, No. 7, 1937-1944, 2013.

    64. Firestein, C. and R. Shavit, "Effective electrical parameters evaluation for non-dispersive metamaterials with highly interaction fields," IET Microwaves, Antennas & Propagation, Vol. 13, No. 8, 1151-1157, 2019.

    65. Karamanos, T. D., S. D. Assimonis, A. I. Dimitriadis, and N. V. Kantartzis, "Effective parameter extraction of 3D metamaterial arrays via first-principles homogenization theory," Photonics and Nanostructures-Fundamentals and Applications, Vol. 12, No. 4, 291-297, 2014.

    66. Kildishev, A. V., J. D. Borneman, X. Ni, V. M. Shalaev, and V. P. Drachev, "Bianisotropic effective parameters of optical metamagnetics and negative-index materials," Proceedings of the IEEE, Vol. 99, No. 10, 1691-1700, 2011.

    67. Pors, A., I. Tsukerman, and S. I. Bozhevolnyi, "Effective constitutive parameters of plasmonic metamaterials: Homogenization by dual field interpolation," Physical Review E, Vol. 84, No. 1, 016609, 2011.

    68. Pors, A., M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, "Detuned electrical dipoles metamaterial with bianisotropic response," Physical Review B, Vol. 83, No. 24, 245409, 2011.

    69. Shaltout, A., V. Shalaev, and A. Kildishev, "Homogenization of bi-anisotropic metasurfaces," Optics Express, Vol. 21, No. 19, 21941-21950, 2013.

    70. Sihvola, A., "Olyslager approach to bianisotropic mixtures," 2010 URSI International Symposium on Electromagnetic Theory, IEEE, 2010.

    71. Silveirinha, M. G., "Design of linear-to-circular polarization transformers made of long densely packed metallic helices," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 2, 390-401, 2008.

    72. Simovski, C. and S. Tretyakov, "On effective electromagnetic parameters of artificial nanostructured magnetic materials," Photonics and Nanostructures - Fundamentals and Applications, Vol. 8, No. 4, 254-263, 2010.

    73. Simovski, C. R., E. Verney, S. Zouhdi, and A. Fourrier-Lamer, "Homogenization of planar bianisotropic arrays on the dielectric interface," Electromagnetics, Vol. 22, No. 3, 177-189, 2002.

    74. Tsukerman, I., "Effective parameters of metamaterials: A rigorous homogenization theory via Whitney interpolation," JOSA B, Vol. 28, No. 3, 577-586, 2011.

    75. Wang, N. and G. P. Wang, "Effective medium theory with closed-form expressions for bi-anisotropic optical metamaterials," Optics Express, Vol. 27, No. 17, 23739-23750, 2019.

    76. Asadchy, V. S., A. Díaz-Rubio, and S. A. Tretyakov, "Bianisotropic metasurfaces: Physics and applications," Nanophotonics, Vol. 7, No. 6, 1069-1094, 2018.

    77. Asadchy, V. S. and S. A. Tretyakov, "Modular analysis of arbitrary dipolar scatterers," Physical Review Applied, Vol. 12, No. 2, 024059, 2019.

    78. Glybovski, S. B., S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, 1-72, 2016.

    79. Mirmoosa, M. S., Y. Ra'di, V. S. Asadchy, C. R. Simovski, and S. A. Tretyakov, "Polarizabilities of nonreciprocal bianisotropic particles," Physical Review Applied, Vol. 1, No. 3, 034005, 2014.

    80. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Physical Review Applied, Vol. 2, No. 4, 044011, 2014.

    81. Ranjbar, A. and A. Grbic, "Analysis and synthesis of cascaded metasurfaces using wave matrices," Physical Review B, Vol. 95, No. 20, 205114, 2017.

    82. Chang, P.-H., C.-Y. Kuo, and R.-L. Chern, "Wave propagation in bianisotropic metamaterials: Angular selective transmission," Optics Express, Vol. 22, No. 21, 25710-25721, 2014.

    83. Chern, R.-L. and P.-H. Chang, "Wave propagation in pseudochiral media: Generalized Fresnel equations," JOSA B, Vol. 30, No. 3, 552-558, 2013.

    84. Dimitriadis, A. I., N. V. Kantartzis, T. D. Tsiboukis, and C. Hafner, "Generalized non-local surface susceptibility model and Fresnel coefficients for the characterization of periodic metafilms with bianisotropic scatterers," Journal of Computational Physics, Vol. 281, 251-268, 2015.

    85. Evlyukhin, A. B., V. R. Tuz, V. S. Volkov, and B. N. Chichkov, "Bianisotropy for light trapping in all-dielectric metasurfaces," Physical Review B, Vol. 101, No. 20, 205415, 2020.

    86. Furs, A. N., "Surface electromagnetic waves in 1D optically active photonic crystals," Journal of Optics, Vol. 13, No. 5, 055103, 2011.

    87. Gauthier, R., "The bianisotropic formulation of the plane wave method from Faraday's and Ampere's Laws," Optics and Photonics Journal, Vol. 11, No. 8, 360-386, 2021.

    88. Guo, Q., W. Gao, J. Chen, Y. Liu, and S. Zhang, "Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials," Physical Review Letters, Vol. 115, No. 6, 067402, 2015.

    89. Guo, R.-P., Q.-H. Guo, L.-T. Wu, J. Chen, and D. Fan, "Optical spin-sensitive Zitterbewegung in bianisotropic metamaterials," Optics Express, Vol. 24, No. 13, 13788-13799, 2016.

    90. Hasar, U. C., J. J. Barroso, T. Karacali, and M. Ertugrul, "Semi-infinite reflection coefficients of bi-anisotropic metamaterial slabs including boundary effects," IEEE Microwave and Wireless Components Letters, Vol. 25, No. 5, 283-285, 2015.

    91. Karimi, P., B. Rejaei, and A. Khavasi, "Unidirectional surface waves in bi-anisotropic media," IEEE Journal of Quantum Electronics, Vol. 54, No. 6, 1-6, 2018.

    92. Keller, S. M. and G. P. Carman, "Electromagnetic wave propagation in (bianisotropic) magnetoelectric materials," Journal of Intelligent Material Systems and Structures, Vol. 24, No. 5, 651-668, 2013.

    93. Lunnemann, P., I. Sersic, and A. Femius Koenderink, "Optical properties of two-dimensional magnetoelectric point scattering lattices," Physical Review B, Vol. 88, No. 24, 245109, 2013.

    94. Mackay, T. G. and A. Lakhtakia, "Negative refraction, negative phase velocity, and counterposition in bianisotropic materials and metamaterials," Physical Review B, Vol. 79, No. 23, 235121, 2009.

    95. Morgado, T. A., S. I. Maslovski, and M. G. Silveirinha, "Uniaxial indefinite material formed by helical-shaped wires," New Journal of Physics, Vol. 14, No. 6, 063002, 2012.

    96. Peng, L., Y. Chen, Y. Yang, Z. Wang, F. Yu, G. Wang, N.-H. Shen, B. Zhang, C. M. Soukoulis, and H. Chen, "Spin momentum-locked surface states in metamaterials without topological transition," Laser & Photonics Reviews, Vol. 12, No. 8, 1800002, 2018.

    97. Peng, L., L. Duan, K. Wang, F. Gao, L. Zhang, G. Wang, Y. Yang, H. Chen, and S. Zhang, "Transverse photon spin of bulk electromagnetic waves in bianisotropic media," Nature Photonics, Vol. 13, No. 12, 878-882, 2019.

    98. Ra'di, Y. and A. Alù, "Nonreciprocal wavefront manipulation in synthetically moving metagratings," Photonics, 2020.

    99. Ra'di, Y. and A. Grbic, "Magnet-free nonreciprocal bianisotropic metasurfaces," Physical Review B, Vol. 94, No. 19, 195432, 2016.

    100. Ranjbar, A. and A. Grbic, "Broadband, multiband, and multifunctional all-dielectric metasurfaces," Physical Review Applied, Vol. 11, No. 5, 054066, 2019.

    101. Semchenko, I. V., S. A. Khakhomov, S. A. Tretyakov, A. H. Sihvola, and E. A. Fedosenko, "Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves," Journal of Physics D: Applied Physics, Vol. 31, No. 19, 2458, 1998.

    102. Tretyakov, S. and A. Sochava, "Novel uniaxial bianisotropic materials: Reflection and transmission in planar structures," Progress In Electromagnetics Research, Vol. 9, 157-179, 1994.

    103. Barkovskii, L. M., G. N. Borzdov, and A. V. Lavrinenko, "Fresnel's reflection and transmission operators for stratified gyroanisotropic media," Journal of Physics A: Mathematical and General, Vol. 20, No. 5, 1095, 1987.

    104. LaBalle, M. and M. Durach, "Additional waves and additional boundary conditions in local quartic metamaterials," OSA Continuum, Vol. 2, No. 1, 17-24, 2019.

    105. Durach, M., "Complete 72-parametric classification of surface plasmon polaritons in quartic metamaterials," OSA Continuum, Vol. 1, No. 1, 162-169, 2018.

    106. Achouri, K. and O. J. Martin, "Surface-wave dispersion retrieval method and synthesis technique for bianisotropic metasurfaces," Physical Review B, Vol. 99, No. 15, 155140, 2019.

    107. Lunnemann, P. and A. F. Koenderink, "Dispersion of guided modes in two-dimensional split ring lattices," Physical Review B, Vol. 90, No. 24, 245416, 2014.

    108. Mousvai, S. M., B. A. Arand, and K. Forooraghi, "Surface wave propagation on bianisotropic metasurfaces by using electric and magnetic polarizabilities," IEEE Access, Vol. 9, 54241-54253, 2021.

    109. Popov, V., A. V. Lavrinenko, and A. Novitsky, "Surface waves on multilayer hyperbolic metamaterials: Operator approach to effective medium approximation," Physical Review B, Vol. 97, No. 12, 125428, 2018.

    110. Xia, L., B. Yang, Q. Guo, W. Gao, H. Liu, J. Han, W. Zhang, and S. Zhang, "Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability," Nanophotonics, Vol. 8, No. 8, 1357-1362, 2019.

    111. Yu, Y.-Z., C.-Y. Kuo, R.-L. Chern, and C. T. Chan, "Photonic topological semimetals in bianisotropic metamaterials," Scientific Reports, Vol. 9, No. 1, 1-13, 2019.

    112. Darinskii, A., "Surface electromagnetic waves in bianisotropic superlattices and homogeneous media," Physical Review A, Vol. 103, No. 3, 033501, 2021.

    113. Darinskii, A., "Surface plasmon polaritons in metal films on anisotropic and bianisotropic substrates," Physical Review A, Vol. 104, No. 2, 023507, 2021.

    114. Razzaz, F. and M. A. Alkanhal, "Terahertz evanescent wave tunneling in bianisotropic thin films," 2018 International Applied Computational Electromagnetics Society Symposium (ACES), IEEE, 2018.

    115. Razzaz, F. and M. A. Alkanhal, "Electromagnetic tunneling and resonances in pseudochiral omega slabs," Scientific Reports, Vol. 7, No. 1, 1-9, 2017.

    116. Razzaz, F. and M. A. Alkanhal, "Resonances in bianisotropic layers," IEEE Photonics Journal, Vol. 10, No. 1, 1-12, 2017.

    117. Popov, V., A. V. Lavrinenko, and A. Novitsky, "Operator approach to effective medium theory to overcome a breakdown of Maxwell Garnett approximation," Physical Review B, Vol. 94, No. 8, 085428, 2016.

    118. Born, M. and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Elsevier, 2013.

    119. Airy, G. B., "VI. On the phnomena of Newton's rings when formed between two transparent substances of different refractive powers," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 2, No. 7, 20-30, 1833.

    120. Fabry, C. and A. Perot, "Theorie et applications d'une nouvelle methode de spectroscopie interferentielle," Ann. Chim. Phys., Vol. 16, No. 7, 1899.

    121. Perot, A. and C. Fabry, "On the application of interference phenomena to the solution of various problems of spectroscopy and metrology," Astrophysical Journal, Vol. 9, 87, 1899.

    122. Kavokin, A. V., J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities, Oxford University Press, 2011.

    123. Bozhevolnyi, S. I., Plasmonic Nanoguides and Circuits, Pan Stanford Publishing, 2009.

    124. Lindell, I. V., "On the classification of electromagnetic media," 2010 URSI International Symposium on Electromagnetic Theory, IEEE, 2010.

    125. Graglia, R. D., M. S. Sarto, and P. L. Uslenghi, "TE and TM modes in cylindrical metallic structures filled with bianisotropic material," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 8, 1470-1477, 1996.

    126. Lindell, I. V., L. Bergamin, and A. Favaro, "Decomposable medium conditions in four-dimensional representation," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 367-376, 2011.

    127. Lindell, I. V. and F. Olyslager, "Generalized decomposition of electromagnetic fields in bi-anisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 46, No. 10, 1584-1585, 1998.

    128. Uslenghi, P. L., "TE-TM decoupling for guided propagation in bianisotropic media," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 2, 284-286, 1997.

    129. Durach, M. and A. Rusina, "Transforming Fabry-Perot resonances into a Tamm mode," Physical Review B, Vol. 86, No. 23, 235312, 2012.

    130. Keene, D. and M. Durach, "Hyperbolic resonances of metasurface cavities," Optics Express, Vol. 23, No. 14, 18577-18588, 2015.

    131. Keene, D., M. LePain, and M. Durach, "Ultimately thin metasurface wave plates," Annalen der Physik, Vol. 528, No. 11-12, 767-777, 2016.

    132. Berreman, D. W., "Optics in stratified and anisotropic media: 4×4-matrix formulation," JOSA, Vol. 62, No. 4, 502-510, 1972.

    133. Hodges, R., C. Dean, and M. Durach, "Optical neutrality: Invisibility without cloaking," Optics Letters, Vol. 42, No. 4, 691-694, 2017.

    134. D'yakonov, M. I., "New type of electromagnetic wave propagating at an interface," Sov. Phys. JETP, Vol. 67, No. 4, 714-716, 1988.

    135. Takayama, O., L.-C. Crasovan, S. K. Johansen, D. Mihalache, D. Artigas, and L. Torner, "Dyakonov surface waves: A review," Electromagnetics, Vol. 28, No. 3, 126-145, 2008.

    136. Takayama, O., L. Crasovan, D. Artigas, and L. Torner, "Observation of Dyakonov surface waves," Physical Review Letters, Vol. 102, No. 4, 043903, 2009.

    137. Takayama, O., D. Artigas, and L. Torner, "Practical dyakonons," Optics Letters, Vol. 37, No. 20, 4311-4313, 2012.

    138. Polo, J., T. Mackay, and A. Lakhtakia, Electromagnetic Surface Waves: A Modern Perspective, Newnes, 2013.