Vol. 165

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Triple-Band Polarization Angle Independent 90° Polarization Rotator Based on Fermat's Spiral Structure Planar Chiral Metamaterial

By Yongzhi Cheng, Wangyang Li, and Xuesong Mao
Progress In Electromagnetics Research, Vol. 165, 35-45, 2019


We propose a planar chiral metamaterial (PCMM), which can function as a triple-band polarization angle independent 90° polarization rotator. The unit cell of the PCMM is composed of bi-layered mutual twisted Fermat's spiral structure (FSS) resonators with four-fold rotation symmetry. The simulated and measured results show that the PCMM can work in triple-band and convert a linearly polarized (y-/x-polarized) wave to its cross-polarization (x-/y-polarized) or experience a near 90° polarization rotation with a polarization conversion ratio of over 90%. The electric field and surface current distributions of the unit-cell structure are analyzed to study its physics mechanism. Compared with previous CMM-based rotator, our design has more operation frequencies in a single PCMM structure, a relative thinner thickness, and higher Q-factor. Good performances of the PCMM suggest promising applications in the polarization rotator or convertor that need to be integrated with other compact devices.


Yongzhi Cheng, Wangyang Li, and Xuesong Mao, "Triple-Band Polarization Angle Independent 90° Polarization Rotator Based on Fermat's Spiral Structure Planar Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.


    1. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, New Jersey, 2007.

    2. Zhao, Y., M. A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.

    3. Yao, B., M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, "Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films," Opt. Lett., Vol. 30, No. 22, 3060-3062, 2005.

    4. Sherif, E., H. Mohamed, H. Mohamed, and E. A. Soliman, "E-shaped wideband plasmonic nantennas with linear and dual-linear polarizations," Photon. Res., Vol. 3, 140145, 2015.

    5. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, 063908, 2007.

    6. Chin, J. Y., M. Lu, and T. J. Cui, "Metamaterial polarizers by electric-field-coupled resonators," Appl. Phys. Lett., Vol. 93, 251903, 2008.

    7. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209215, 2013.

    8. He, Q., S. L. Sun, S. Y. Xiao, X. Li, Z. Y. Song, W. J. Sun, and L. Zhou, "Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations," Chin. Phys. B, Vol. 23, No. 4, 047808, 2014.

    9. Huang, C., X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, "Dual-band 90° polarization rotator using twisted split ring resonators array," Opt. Commun., Vol. 291, 345-348, 2013.

    10. Xiong, X., Y. Hu, S. Jiang, Y. Hu, R. Fan, G. Ma, D. Shu, R. Peng, and M. Wang, "Metallic stereostructured layer: An approach for broadband polarization state manipulation," Appl. Phys. Lett., Vol. 105, 201105, 2014.

    11. Chen, C. Y., T. R. Tsai, C. L. Pan, and R. P. Pan, "Effect of carbon nanotube doping on critical current density of MgB2MgB2 superconductor," Appl. Phys. Lett., Vol. 83, 4497, 2003.

    12. Masson, J. B. and G. Gallot, "Terahertz achromatic quarter-wave plate," Opt. Lett., Vol. 31, No. 2, 265-267, 2006.

    13. Ye, Y. and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.

    14. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.

    15. Huang, Y., Z. Yao, Q. Wang, F. Hu, and X. Xu, "Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region," Plasmonics, Vol. 10, No. 4, 1005-1011, 2015.

    16. Chen, C. Y., T. R. Tsai, C. L. Pan, and R. P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett., Vol. 83, 4497, 2003.

    17. Yamada, I., K. Takano, M. Hangyo, M. Saito, and W. Watanabe, "Terahertz wire-grid polarizers with micrometer-pitch Al gratings," Opt. Lett., Vol. 34, 274, 2009.

    18. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.

    19. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum ¯lter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.

    20. Cheng, Y., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1850-1858, 2013.

    21. Ma, X., C. Huang, M. Pu, W. Pan, Y. Wang, and X. Luo, "Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial," Appl. Phys. Exp., Vol. 6, 022001, 2013.

    22. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.

    23. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.

    24. Han, S., H. Yang, L. Guo, X. Huang, and B. Xiao, "Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials," J. Opt., Vol. 16, No. 3, 035105, 2014.

    25. Yogesh, N. F., T. Lan, and F. Ouyang, "Far-Infrared circular polarization and polarization ¯ltering based on fermat's spiral chiral metamaterial," IEEE Photonics Journal, Vol. 7, No. 3, 1-12, 2015.

    26. Gonulal, S., M. K., E. Unal, F. D. Kemal Delihacioglu, E. Tetik, and C. Sabah, "90° Polarization rotator and antireflector using meanderline chiral metamaterials: Analytical and numerical approach," Optik, Vol. 126, No. 24, 5587-5592, 2015.

    27. Ma, X., Z. Xiao, and D. Liu, "Dual-band cross polarization converter in bi layered complementary chiral metamaterial," Journal of Modern Optics, Vol. 63, No. 10, 937-940, 2016.

    28. Xu, K., Z. Xiao, J. Tang, D. Liu, and Z. Wang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.

    29. Cheng, Y. Z., R. Z. Gong, and L.Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.

    30. Han, J., H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, "An ultrathin twist-structure polarization transformer based on fish-scale metallic wires," Appl. Phys. Lett., Vol. 98, No. 15, 151908, 2011.

    31. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.

    32. Song, K., X. Zhao, Y. Liu, Q. Fu, and C. Luo, "A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials," Appl. Phys. Lett., Vol. 103, 101908, 2013.

    33. Shang, X., X. Zhai, L. Wang, M. He, Q. Li, X. Luo, and H. Duan, "Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces," Appl. Phys. Express, Vol. 10, 052602, 2017.

    34. Mutlu, M. and E. Ozbay, "A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, 051909, 2012.

    35. Shi, H., A. Zhang, S. Zheng, J. Li, and Y. Jiang, "Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators," Appl. Phys. Lett., Vol. 104, No. 3, 034102, 2014.

    36. Tang, J., Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, "Cross polarization conversion based on a new chiral spiral slot structure in THz region," Opt. Quant. Electron., Vol. 48, 111, 2016.

    37. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Physical Review A, Vol. 82, No. 5, 053811, 2010.

    38. Paloma, A., X. S. Huidobro, J. Cuerda, E. Moreno, L. M. Moreno, T. J. C. F. J Garcia-Vidal, and J. B. Pendry, "Magnetic localized surface plasmons," Phys. Rev. X, Vol. 4, No. 2, 021003, 2014.

    39. Gao, Z., F. Gao, Y. Zhang, and B. Zhang, "Complementary structure for designer localized surface plasmons," Applied Physics Letters, Vol. 107, 191103, 2015.

    40. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.

    41. Zhao, J. and Y. Z. Cheng, "Ultrathin dual-band polarization angle independent 90° polarization rotator with giant optical activity based on planar chiral metamaterial," Applied Physics B, Vol. 124, 185, 2018.

    42. Cheng, Z. Z. and Y. Z. Cheng, "A multi-functional polarization convertor based on chiral metamaterial for terahertz waves," Opt. Commun., Vol. 435, 178-182, 2019.