Vol. 165
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2019-07-29
Triple-Band Polarization Angle Independent 90° Polarization Rotator Based on Fermat's Spiral Structure Planar Chiral Metamaterial
By
Progress In Electromagnetics Research, Vol. 165, 35-45, 2019
Abstract
We propose a planar chiral metamaterial (PCMM), which can function as a triple-band polarization angle independent 90° polarization rotator. The unit cell of the PCMM is composed of bi-layered mutual twisted Fermat's spiral structure (FSS) resonators with four-fold rotation symmetry. The simulated and measured results show that the PCMM can work in triple-band and convert a linearly polarized (y-/x-polarized) wave to its cross-polarization (x-/y-polarized) or experience a near 90° polarization rotation with a polarization conversion ratio of over 90%. The electric field and surface current distributions of the unit-cell structure are analyzed to study its physics mechanism. Compared with previous CMM-based rotator, our design has more operation frequencies in a single PCMM structure, a relative thinner thickness, and higher Q-factor. Good performances of the PCMM suggest promising applications in the polarization rotator or convertor that need to be integrated with other compact devices.
Citation
Yongzhi Cheng, Wangyang Li, and Xuesong Mao, "Triple-Band Polarization Angle Independent 90° Polarization Rotator Based on Fermat's Spiral Structure Planar Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 165, 35-45, 2019.
doi:10.2528/PIER18112603
References

1. Saleh, B. E. A. and M. C. Teich, Fundamentals of Photonics, Wiley, 2007.

2. Zhao, Y., M. A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.
doi:10.1038/ncomms1877

3. Yao, B., M. Lei, L. Ren, N. Menke, Y. Wang, T. Fischer, and N. Hampp, "Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films," Opt. Lett., Vol. 30, No. 22, 3060-3062, 2005.
doi:10.1364/OL.30.003060

4. Sherif, E., H. Mohamed, H. Mohamed, and E. A. Soliman, "E-shaped wideband plasmonic nantennas with linear and dual-linear polarizations," Photon. Res., Vol. 3, 140145, 2015.

5. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Phys. Rev. Lett., Vol. 99, 063908, 2007.
doi:10.1103/PhysRevLett.99.063908

6. Chin, J. Y., M. Lu, and T. J. Cui, "Metamaterial polarizers by electric-field-coupled resonators," Appl. Phys. Lett., Vol. 93, 251903, 2008.
doi:10.1063/1.3054161

7. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209215, 2013.

8. He, Q., S. L. Sun, S. Y. Xiao, X. Li, Z. Y. Song, W. J. Sun, and L. Zhou, "Manipulating electromagnetic waves with metamaterials: Concept and microwave realizations," Chin. Phys. B, Vol. 23, No. 4, 047808, 2014.
doi:10.1088/1674-1056/23/4/047808

9. Huang, C., X. Ma, M. Pu, G. Yi, Y. Wang, and X. Luo, "Dual-band 90° polarization rotator using twisted split ring resonators array," Opt. Commun., Vol. 291, 345-348, 2013.
doi:10.1016/j.optcom.2012.10.046

10. Xiong, X., Y. Hu, S. Jiang, Y. Hu, R. Fan, G. Ma, D. Shu, R. Peng, and M. Wang, "Metallic stereostructured layer: An approach for broadband polarization state manipulation," Appl. Phys. Lett., Vol. 105, 201105, 2014.
doi:10.1063/1.4902405

11. Chen, C. Y., T. R. Tsai, C. L. Pan, and R. P. Pan, "Effect of carbon nanotube doping on critical current density of MgB2MgB2 superconductor," Appl. Phys. Lett., Vol. 83, 4497, 2003.
doi:10.1063/1.1631064

12. Masson, J. B. and G. Gallot, "Terahertz achromatic quarter-wave plate," Opt. Lett., Vol. 31, No. 2, 265-267, 2006.
doi:10.1364/OL.31.000265

13. Ye, Y. and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.
doi:10.1063/1.3429683

14. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
doi:10.2528/PIER14020501

15. Huang, Y., Z. Yao, Q. Wang, F. Hu, and X. Xu, "Coupling Tai Chi chiral metamaterials with strong optical activity in terahertz region," Plasmonics, Vol. 10, No. 4, 1005-1011, 2015.
doi:10.1007/s11468-015-9892-7

16. Chen, C. Y., T. R. Tsai, C. L. Pan, and R. P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett., Vol. 83, 4497, 2003.
doi:10.1063/1.1631064

17. Yamada, I., K. Takano, M. Hangyo, M. Saito, and W. Watanabe, "Terahertz wire-grid polarizers with micrometer-pitch Al gratings," Opt. Lett., Vol. 34, 274, 2009.
doi:10.1364/OL.34.000274

18. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.
doi:10.1063/1.3664774

19. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum ¯lter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009

20. Cheng, Y., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1850-1858, 2013.
doi:10.1080/09205071.2013.825891

21. Ma, X., C. Huang, M. Pu, W. Pan, Y. Wang, and X. Luo, "Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial," Appl. Phys. Exp., Vol. 6, 022001, 2013.
doi:10.7567/APEX.6.022001

22. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

23. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104

24. Han, S., H. Yang, L. Guo, X. Huang, and B. Xiao, "Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials," J. Opt., Vol. 16, No. 3, 035105, 2014.
doi:10.1088/2040-8978/16/3/035105

25. Yogesh, N. F., T. Lan, and F. Ouyang, "Far-Infrared circular polarization and polarization ¯ltering based on fermat's spiral chiral metamaterial," IEEE Photonics Journal, Vol. 7, No. 3, 1-12, 2015.
doi:10.1109/JPHOT.2015.2423291

26. Gonulal, S., M. K., E. Unal, F. D. Kemal Delihacioglu, E. Tetik, and C. Sabah, "90° Polarization rotator and antireflector using meanderline chiral metamaterials: Analytical and numerical approach," Optik, Vol. 126, No. 24, 5587-5592, 2015.
doi:10.1016/j.ijleo.2015.09.017

27. Ma, X., Z. Xiao, and D. Liu, "Dual-band cross polarization converter in bi layered complementary chiral metamaterial," Journal of Modern Optics, Vol. 63, No. 10, 937-940, 2016.
doi:10.1080/09500340.2015.1111454

28. Xu, K., Z. Xiao, J. Tang, D. Liu, and Z. Wang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015

29. Cheng, Y. Z., R. Z. Gong, and L.Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, No. 4, 1113-1120, 2017.
doi:10.1007/s11468-016-0365-4

30. Han, J., H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, "An ultrathin twist-structure polarization transformer based on fish-scale metallic wires," Appl. Phys. Lett., Vol. 98, No. 15, 151908, 2011.
doi:10.1063/1.3580608

31. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

32. Song, K., X. Zhao, Y. Liu, Q. Fu, and C. Luo, "A frequency-tunable 90°-polarization rotation device using composite chiral metamaterials," Appl. Phys. Lett., Vol. 103, 101908, 2013.
doi:10.1063/1.4820810

33. Shang, X., X. Zhai, L. Wang, M. He, Q. Li, X. Luo, and H. Duan, "Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces," Appl. Phys. Express, Vol. 10, 052602, 2017.
doi:10.7567/APEX.10.052602

34. Mutlu, M. and E. Ozbay, "A transparent 90° polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, 051909, 2012.
doi:10.1063/1.3682591

35. Shi, H., A. Zhang, S. Zheng, J. Li, and Y. Jiang, "Dual-band polarization angle independent 90° polarization rotator using twisted electric-field-coupled resonators," Appl. Phys. Lett., Vol. 104, No. 3, 034102, 2014.
doi:10.1063/1.1852093

36. Tang, J., Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, "Cross polarization conversion based on a new chiral spiral slot structure in THz region," Opt. Quant. Electron., Vol. 48, 111, 2016.
doi:10.1007/s11082-016-0407-3

37. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Physical Review A, Vol. 82, No. 5, 053811, 2010.
doi:10.1103/PhysRevA.82.053811

38. Paloma, A., X. S. Huidobro, J. Cuerda, E. Moreno, L. M. Moreno, T. J. C. F. J Garcia-Vidal, and J. B. Pendry, "Magnetic localized surface plasmons," Phys. Rev. X, Vol. 4, No. 2, 021003, 2014.

39. Gao, Z., F. Gao, Y. Zhang, and B. Zhang, "Complementary structure for designer localized surface plasmons," Applied Physics Letters, Vol. 107, 191103, 2015.
doi:10.1063/1.4935360

40. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

41. Zhao, J. and Y. Z. Cheng, "Ultrathin dual-band polarization angle independent 90° polarization rotator with giant optical activity based on planar chiral metamaterial," Applied Physics B, Vol. 124, 185, 2018.
doi:10.1007/s00340-018-7050-6

42. Cheng, Z. Z. and Y. Z. Cheng, "A multi-functional polarization convertor based on chiral metamaterial for terahertz waves," Opt. Commun., Vol. 435, 178-182, 2019.
doi:10.1016/j.optcom.2018.11.038