Vol. 152

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-08-30

Adaptive Transmission Method for Alleviating the Radio Blackout Problem

By Guolong He, Yafeng Zhan, and Ning Ge
Progress In Electromagnetics Research, Vol. 152, 127-136, 2015
doi:10.2528/PIER15072702

Abstract

The radio blackout problem stands as one long obstacle for hypersonic flight and planetary atmosphere reentry. Rather than previous physical mitigation methods aiming to reduce the plasma electron density, this paper proposes a novel method which attempts to communicate at carrier frequency much higher than the plasma cutoff frequency. To overcome the highly dynamic channel characteristics, the reflected wave is used online to estimate the instantaneous channel states and enable adaptive transmission. According to the predicted channel states, the plasma sheath induced phase shift and amplitude attenuation are compensated by baseband modulation and power adaptation, respectively. Numerical simulations are presented and discussed, in order to illustrate the effectiveness of the proposed method.

Citation


Guolong He, Yafeng Zhan, and Ning Ge, "Adaptive Transmission Method for Alleviating the Radio Blackout Problem," Progress In Electromagnetics Research, Vol. 152, 127-136, 2015.
doi:10.2528/PIER15072702
http://jpier.org/PIER/pier.php?paper=15072702

References


    1. Rybak, J. P. and R. J. Churchill, "Progress in reentry communications," IEEE Transactions on Aerospace and Electronic Systems, Vol. 7, No. 5, 879-894, Sep. 1971.
    doi:10.1109/TAES.1971.310328

    2. Akey, N. D., "Overview of RAM reentry measurements program," The Entry Plasma Sheath and Its Effects on Space Vehicle Electromagnetic Systems, 19-31, 1970.

    3. Morabito, D. D., "The spacecraft communications blackout problem encountered during passage or entry of planetary atmospheres," IPN Progress Report 42-150, 1-16, Aug. 2002.

    4. Shi, L., B. Guo, Y. Liu, and J. Li, "Characteristic of plasma sheath channel and its effect on communication," Progress In Electromagnetic Research, Vol. 123, 321-336, 2012.
    doi:10.2528/PIER11110201

    5. Bai, B., X. Li, Y. Liu, J. Xu, L. Shi, and K. Xie, "Effects of reentry plasma sheath on the polarization properties of obliquely incident EM waves," IEEE Transactions on Plasma Science, Vol. 42, No. 10, 3365-3372, Oct. 2014.
    doi:10.1109/TPS.2014.2349009

    6. Hartunian, R. A., G. E. Stewart, S. D. Fergason, T. J. Curtiss, and R. W. Seibold, "Causes and mitigation of radio frequency (RF) blackout during reentry of reusable launch vehicles," Contractor Rep. ATR-2007(5309)-1, Aerospace Corporation, CA, 2007.

    7. Belov, I. F., V. Ya. Borovoy, V. A. Gorelov, A. Y. Kireev, A. S. Korolev, and E. A. Stepanov, "Investigation of remote antenna assembly for radio communication with reentry vehicle," Journal of Spacecraft and Rockets, Vol. 38, No. 2, 249-256, Mar. 2001.
    doi:10.2514/2.3678

    8. Hinson, W. F., P. B. Gooderum, and D. M. Bushell, "Experimental investigation of multiple-jet liquid injection into hypersonic flow,", TN D-5861, NASA, Jun. 1970.

    9. Sternberg, N. and A. I. Smolyakov, "Resonant transmission of electromagnetic waves in multilayer dense-plasma structures," IEEE Transactions on Plasma Science, Vol. 37, No. 7, 1251-1260, Jul. 2009.
    doi:10.1109/TPS.2009.2020399

    10. Takahashi, Y., K. Yamada, and T. Abe, "Examination of radio frequency blackout for an inflatable vehicle during atmospheric reentry," Journal of Spacecraft and Rockets, Vol. 51, No. 2, 1954-1964, Mar. 2014.
    doi:10.2514/1.A32880

    11. Kim, M., M. Keidar, and I. D. Boyd, "Analysis of an electromagnetic mitigation scheme for reentry telemetry through plasma," Journal of Spacecraft and Rockets, Vol. 45, No. 6, 1223-1229, Nov. 2008.
    doi:10.2514/1.37395

    12. Shashurin, A., T. Zhuang, G. Teel, M. Keidar, M. Kundrapu, J. Loverich, I. I. Beilis, and Y. Raitses, "Laboratory modeling of the plasma layer at hypersonic flight," Journal of Spacecraft and Rockets, Vol. 51, No. 3, 838-845, May 2014.
    doi:10.2514/1.A32771

    13. Kundrapu, M., J. Loverich, K. Beckwith, P. Stoltz, A. Shashurin, and M. Keidar, "Modeling radio communication blackout and blackout mitigation in hypersonic vehicles," Journal of Spacecraft and Rockets, 1-10, 2015.

    14. Gilllman, E. D., J. E. Foster, and I. M. Blankson, "Review of leading approaches for mitigating hypersonic vehicle communications blackout and a method of ceramic particulate injection via cathode spot arcs for blackout mitigation,", NASA,Washington DC, NASA/TM-2010-216220, 2010.

    15. Vilnrotter, V. A., S. Hinedi, and R. Kumar, "Frequency estimation techniques for high dynamic trajectories," IEEE Transactions on Aerospace and Electronic Systems, Vol. 25, No. 4, 559-577, Jul. 1989.
    doi:10.1109/7.32088

    16. Hurd, W. J., P. Estabrook, C. S. Racho, and E. Satorius, "Critical spacecraft-to-earth communications for Mars exploration rover (MER) entry, descent and landing," Proc. IEEE Aerospace Conference, Vol. 3, 1283-1292, MT, Mar. 2002.

    17. Satorius, E., P. Estabrook, J. Wilson, and D. Fort, "Direct-to-Earth communications and signal processing for Mars exploration rover entry, descent and landing," The Interplanetary Network Progress Report, IPN Progress Report 42-153, May 2003.

    18. Soriano, M., S. Finley, D. Fort, B. Schratz, P. Ilott, R. Mukai, P. Estabrook, K. Oudrhiri, D. Kahan, and E. Satorius, "Direct-to-Earth communications with Mars science laboratory during entry, descent, and landing," Proc. 2013 IEEE Aerospace Conference, 1-14, 2013.

    19. Cattivelli, F. S., P. Estabrook, E. H. Satorius, and A. H. Sayed, "Carrier recovery enhancement for maximum-likelihood doppler shift estimation in Mars exploration missions," IEEE Journal of Selected Topics in Signal Processing, Vol. 2, No. 5, 658-669, Oct. 2008.
    doi:10.1109/JSTSP.2008.2005289

    20. Lopes, C. G., E. H. Satorius, P. Estabrook, and A. H. Sayed, "Adaptive carrier tracking for Mars to earth communications during entry, descent, and landing," IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 4, 1865-1879, Oct. 2010.
    doi:10.1109/TAES.2010.5595600

    21. Chung, S. T. and A. J. Goldsmith, "Degrees of freedom in adaptive modulation: A unified view," IEEE Transactions on Communications, Vol. 49, No. 9, 1561-1571, Sep. 2001.
    doi:10.1109/26.950343

    22. Goldsmith, A. J., Wireless Communications, Cambridge University Press, Cambridge, U.K., 2005.
    doi:10.1017/CBO9780511841224

    23. Svensson, A., "An overview of adaptive modulation schemes for known and predicted channels," Proceedings of the IEEE, Vol. 95, No. 12, 2322-2336, Dec. 2007.
    doi:10.1109/JPROC.2007.904442

    24. Yang, T. S., A. Duel-Hallen, and H. Hallen, "Reliable adaptive modulation aided by observations of another fading channel," IEEE Transactions on Communications, Vol. 52, No. 4, 605-611, Apr. 2004.
    doi:10.1109/TCOMM.2004.826369

    25. Duel-Hallen, A., S. Hu, and H. Hallen, "Long-range prediction of fading signals: Enabling adaptive transmission for mobile radio channels," IEEE Signal Processing Magazine, Vol. 17, No. 3, 62-75, May 2000.
    doi:10.1109/79.841729

    26. Duel-Hallen, A., "Fading channel prediction for mobile radio adaptive transmission systems," Proceedings of the IEEE, Vol. 95, No. 12, 2299-2313, Dec. 2007.
    doi:10.1109/JPROC.2007.904443

    27. Bachynski, M. P., T. W. Johnston, and I. Shkarofsky, "Electromagnetic properties of high temperature air," Proceedings of the IRE, Vol. 48, No. 3, 347-356, Mar. 1960.
    doi:10.1109/JRPROC.1960.287607

    28. He, G., Y. Zhan, N. Ge, Y. Pei, B. Wu, and Y. Zhao, "Channel characterization and finite-state Markov channel modeling for time-varying plasma sheath surrounding hypersonic vehicles," Progress In Electromagnetic Research, Vol. 145, 299-308, 2014.
    doi:10.2528/PIER14031104

    29. He, G., Y. Zhan, N. Ge, Y. Pei, and B. Wu, "Measuring the time-varying channel characteristics of the plasma sheath from the reflected signal," IEEE Transactions on Plasma Science, Vol. 42, No. 12, 3975-3981, Dec. 2014.
    doi:10.1109/TPS.2014.2363840

    30. Lin, T. C. and L. K. Sproul, "Influence of reentry turbulent plasma fluctuation on EM wave propagation," Computers and Fluids, Vol. 35, 703-711, 2006.
    doi:10.1016/j.compfluid.2006.01.009

    31. Demetriades, A. and R. Grabow, "Mean and fluctuating electron density in equilibrium turbulent boundary layers," AIAA, Vol. 9, 1533-1538, Aug. 1971.
    doi:10.2514/3.49956

    32. Josyula, E. and W. Bailey, "Governing equations for weakly ionized plasma fields of aerospace vehicles," Journal of Spacecraft and Rockets, Vol. 40, No. 6, 845-857, Nov. 2003.
    doi:10.2514/2.7036

    33. Kasdin, N. J., "Discrete simulation of colored noise and stochastic processes and 1/fα power law noise generation," Proceedings of the IEEE, Vol. 83, No. 5, 802-827, May 1995.
    doi:10.1109/5.381848

    34. Orfanidis, S. J., Electromagnetic Waves and Antennas, Online Book, 1999.