Vol. 151

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2015-05-15

Magnetized Plasma as a Versatile Platform for Switching

By Lian Shen, Runren Zhang, Zuo Jia Wang, Shahram Dehdashti, Shi Sheng Lin, and Hongsheng Chen
Progress In Electromagnetics Research, Vol. 151, 119-125, 2015
doi:10.2528/PIER15031701

Abstract

We study the magneto-permittivity effect in a magnetized plasma with appropriately designed parameters. We show that at frequency near the plasma frequency, magneto-optical activity plays an important role to manipulate and control the wave propagations in the magnetized plasma. Such a unique feature can be utilized to establish sensitive magnetic field switching mechanism, which is confirmed by detailed numerical investigations. Switching by magnetic field based on magnetized plasma is flexible and compatible with other optical system; moreover it is applicable to any frequency by tuning the plasma density. For these reason, our work shows the possibility for developing a new family of high frequency and ultrasensitive switching applications.

Citation


Lian Shen, Runren Zhang, Zuo Jia Wang, Shahram Dehdashti, Shi Sheng Lin, and Hongsheng Chen, "Magnetized Plasma as a Versatile Platform for Switching," Progress In Electromagnetics Research, Vol. 151, 119-125, 2015.
doi:10.2528/PIER15031701
http://jpier.org/PIER/pier.php?paper=15031701

References


    1. Kimura, T., T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, "Magnetic control of ferroelectric polarization," Nature, Vol. 426, 55-58, 2003.
    doi:10.1038/nature02018

    2. Zhang, X. C., Y. Jin, T. D. Hewitt, T. Sangsiri, L. E. Kingsley, and M. Weiner, "Magnetic switching of THz beams," Applied Physics Letters, Vol. 67, No. 17, 2003-2005, 1993.
    doi:10.1063/1.109514

    3. Liu, K., W. Jiang, F. Sun, and S. He, "Experimental realization of strong DC magnetic enhancement with transformation optics," Progress In Electromagnetics Research, Vol. 146, 187-194, 2014.
    doi:10.2528/PIER14042704

    4. Chin, J. Y., et al., "Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation," Nature Communications, Vol. 4, 1599, 2013.
    doi:10.1038/ncomms2609

    5. Liu, M. and X. Zhang, "Plasmon-boosted magneto-optics," Nature Photonics, Vol. 7, 429-430, 2013.
    doi:10.1038/nphoton.2013.134

    6. Sessel, G. K. and I. W. Hofsajer, "Synthesis of magnetic field concentrated in one dimension," Progress In Electromagnetics Research, Vol. 144, 141-150, 2014.
    doi:10.2528/PIER13121304

    7. Zvezdin, A. K. and V. A. Kotov, Modern magnetooptics and Magnetooptical Materials, Taylor & Francis, New York, 1997.

    8. Potton, R. J., "Reciprocity in optics," Reports on Progress in Physics, Vol. 67, 717, 2004.
    doi:10.1088/0034-4885/67/5/R03

    9. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

    10. Inoue, M., M. Levy, and A. Baryshev, Magnetophotonics: From Theory to Applications, Springer, Berlin, 2013.

    11. Baibich, M. N., J. M. Broto, A. Fert, N. V. Dau, and F. Petroff, "Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices," Physical Review Letters, Vol. 61, 2472-2475, 1988.
    doi:10.1103/PhysRevLett.61.2472

    12. Binasch, G., P. Grunberg, F. Saurenbach, and W. Zinn, "Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange," Physical Review B, Vol. 39, 1989.

    13. Correa, M. A., F. Bohn, C. Chesman, R. B. Silva, A. D. C. Viegas, and R. L. Sommer, "Tailoring the magnetoimpedance effect of NiFe/Ag multilayer," Journal of Physics D: Applied Physics, Vol. 43, 295004, 2010.
    doi:10.1088/0022-3727/43/29/295004

    14. Pershan, P. S., "Magneto-optical effects," Journal of Applied Physics, Vol. 38, No. 3, 1482, 1967.
    doi:10.1063/1.1709678

    15. Freiser, M., "A survey of magnetooptic effects," IEEE Transactions on Magnetics, Vol. 4, No. 2, 152-161, 1968.
    doi:10.1109/TMAG.1968.1066210

    16. Silveririnha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials," Physical Review Letters, Vol. 97, 157403, 2006.
    doi:10.1103/PhysRevLett.97.157403

    17. Edwards, B., A. Alu, M. E. Young, M. Silveririnha, and N. Engheta, "Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide," Physical Review Letters, Vol. 100, 033903, 2008.
    doi:10.1103/PhysRevLett.100.033903

    18. Maas, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nature Photonics, Vol. 7, 907-912, 2013.
    doi:10.1038/nphoton.2013.256

    19. Vesseur, E. J., T. Conenen, H. Caglayan, N. Engheta, and A. Polman, "Experimental verification of n = 0 structures for visible light," Physical Review Letters, Vol. 110, 0139202, 2013.

    20. Engheta, N., "Pursuing near-zero response," Science, Vol. 340, 286, 2013.
    doi:10.1126/science.1235589

    21. Davoyan, A. R., A. M. Mahmoud, and N. Engheta, "Optical isolation with epsilon-near-zero metamaterials," Optical Express, Vol. 21, 3279, 2013.
    doi:10.1364/OE.21.003279

    22. Lin, X., Z.Wang, F. Gao, B. Zhang, and H. Chen, "Atomically thin nonreciprocal optical isolation," Scientific Reports, Vol. 4, 4190, 2014.

    23. Lin, X., Y. Xu, B. Zhang, R. Hao, H. Chen, and E. Li, "Unidirectional surface plasmons in nonreciprocal graphene," New Journal of Physics, Vol. 15, 113003, 2013.
    doi:10.1088/1367-2630/15/11/113003

    24. Davoyan, A. R. and N. Engheta, "Theory of wave propagation in magnetized near-zero-epsilon metamaterials: Evidence for one-way photonic states and magnetically switched transparency and opacity," Physical Review Letters, Vol. 111, 257401, 2013.
    doi:10.1103/PhysRevLett.111.257401

    25. Chettiar, U. K., A. R. Davoyan, and N. Engheta, "Hotspots from nonreciprocal surface waves," Optical Letters, Vol. 39, 1760, 2014.
    doi:10.1364/OL.39.001760

    26. Davoyan, A. and N. Engheta, "Electrically controlled one-way photon flow in plasmonic nanostructures," Nature Communications, Vol. 5, 5250, 2014.
    doi:10.1038/ncomms6250

    27. Bellan, P. W., Fundamental of Plasma Physics, Cambridge University Press, Cambridge, England, 2006.
    doi:10.1017/CBO9780511807183

    28. Landau, L. D., L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media, Butterworth-Heinemann, Oxford, England, 1984.

    29. Camley, R. E., "Nonreciprocal surface modes," Surface Science Reports, Vol. 7, 103, 1987.
    doi:10.1016/0167-5729(87)90006-9

    30. Bliokh, Y. P., J. Felsteiner, and Y. Z. Slutsker, "Total absorption of an electromagnetic wave by an overdense plasma," Physical Review Letters, Vol. 95, 165003, 2005.
    doi:10.1103/PhysRevLett.95.165003