Vol. 146

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2014-05-01

Near-Field Properties of Plasmonic Nanostructures with High Aspect Ratio

By Yacoub Ould Agha, Olivier Demichel, Christian Girard, Alexandre Bouhelier, and Gerard Colas des Francs
Progress In Electromagnetics Research, Vol. 146, 77-88, 2014
doi:10.2528/PIER14012904

Abstract

Using the Green's dyad technique based on cuboidal meshing, we compute the electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect of the meshing shape on the numerical simulations. We observe that discretizing the object with cells with aspect ratios similar to the object's aspect ratio improves the computations, without degrading the convergency. We also compare our numerical simulations to finite element method and discuss further possible improvements.

Citation


Yacoub Ould Agha, Olivier Demichel, Christian Girard, Alexandre Bouhelier, and Gerard Colas des Francs, "Near-Field Properties of Plasmonic Nanostructures with High Aspect Ratio," Progress In Electromagnetics Research, Vol. 146, 77-88, 2014.
doi:10.2528/PIER14012904
http://jpier.org/PIER/pier.php?paper=14012904

References


    1. Agio, M., "Optical antennas as nanoscale resonators," Nanoscale, Vol. 4, 692-706, 2012.
    doi:10.1039/c1nr11116g

    2. Derom, S., R. Vincent, A. Bouhelier, and G. Colas des Francs, "Resonance quality, radiative/ohmic losses and modal volume of Mie plasmons," EPL, Vol. 98, 47008, 2012.
    doi:10.1209/0295-5075/98/47008

    3. Bharadwaj, P., B. Deutsch, and L. Novotny, "Optical antennas," Advances in Optics and Photonics, Vol. 1, 438-483, 2009.
    doi:10.1364/AOP.1.000438

    4. Olmon, R. L. and M. B. Raschke, "Antenna-load interactions at optical frequencies: Impedance matching to quantum systems," Nanotechnology, Vol. 23, 444001, 2012.
    doi:10.1088/0957-4484/23/44/444001

    5. Moskovits, M., "Surface-enhanced spectroscopy," Reviews of Modern Physics, Vol. 57, 783-826, 1985.
    doi:10.1103/RevModPhys.57.783

    6. Pettinger, B., "Single-molecule surface- and tip-enhanced raman spectroscopy," Molecular Physics, Vol. 108, 2039-2059, 2010.
    doi:10.1080/00268976.2010.506891

    7. Girard, C., "Near-field in nanostructures," Report on Progress in Physics, Vol. 68, 1883-1933, 2005.
    doi:10.1088/0034-4885/68/8/R05

    8. Pastoriza-Santos, I. and L. M. Liz-Marzan, "Colloidal silver nanoplates. State of the art and future challenges," Journal of Materials Chemistry, Vol. 18, 1713-1720, 2008.
    doi:10.1039/b716538b

    9. Thete, A., O. Rojas, D. Neumeyer, J. Koetz, and E. Dujardin, "Ionic liquid-assisted morphosynthesis of gold nanorods using polyethyleneimine-capped seeds," RSC Advances, Vol. 3, 14294-14298, 2005.
    doi:10.1039/c3ra22112a

    10. Lakhtakia, A., "Strong and weak forms of the method of moments and the coupled dipole method for scattering of time-harmonic electromagnetic fields," Journal of Modern Physics C, Vol. 3, 583-603, 1992.
    doi:10.1142/S0129183192000385

    11. Paulus, M., P. Gay-Balmaz, and O. Martin, "Green's tensor technique for scattering in two-dimensional stratified media," Physical Review E, Vol. 63, 66615, 2001.
    doi:10.1103/PhysRevE.63.066615

    12. Leveque, G., et al., "Polarization state of the optical near-field," Physical Review E, Vol. 65, 36701, 2002.
    doi:10.1103/PhysRevE.65.036701

    13. Girard, C., J. C. Weeber, A. Dereux, O. J. F. Martin, and J. P. Goudonnet, "Optical magnetic near-field intensities around nanometer-scale surface structures," Physical Review B, Vol. 55, 16487-16497, 1997.
    doi:10.1103/PhysRevB.55.16487

    14. Novotny, L., "Allowed and forbidden light in near-field optics. I. A single dipolar light source," Journal of the Optical Society of America, Vol. 14, 91-104, 1997.
    doi:10.1364/JOSAA.14.000091

    15. Colas des Francs, G., C. Girard, J.-C. Weeber, and A. Dereux, "Relationship between scanning near-fifild optical images and local density of photonic states," Chemical Physics Letters, Vol. 345, 512-516, 2001.
    doi:10.1016/S0009-2614(01)00914-9

    16. Girard, C., O. Martin, G. Leveque, G. Colas des Francs, and A. Dereux, "Generalized bloch equations for optical interactions in confined geometries," Chemical Physics Letters, Vol. 404, No. 44, 2005.

    17. Kottmann, J. P. and O. J. F. Martin, "Accurate solution of the volume integral equation for high-permittivity scatterers," IEEE Transactions on Antennas and Propagation, Vol. 48, 1719-1726, 2000.
    doi:10.1109/8.900229

    18. Chaumet, P. C., A. Sentenac, and A. Rahmani, "Coupled dipole method for scatterers with large permittivity," Physical Review E, Vol. 70, 36606, 2004.
    doi:10.1103/PhysRevE.70.036606

    19. Gao, G., C. Torres-Verdin, and T. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green's functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.
    doi:10.2528/PIER04070201

    20. Myroshnychenko, V., et al., "Modeling the optical response of highly faceted metal nanoparticles with a fully 3D boundary element method," Advanced Materials, Vol. 20, 4288-4293, 2008.
    doi:10.1002/adma.200703214

    21. Hohenester, U. and A. Trugler, "Interaction of single molecules with metallic nanoparticles," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 14, 1430, 2008.
    doi:10.1109/JSTQE.2008.2007918

    22. Kern, A. and O. Martin, "Surface integral formulation for 3D simulations of plasmonic and high permittivity nanostructures," Journal of the Optical Society of America A, Vol. 26, 732-740, 2009.
    doi:10.1364/JOSAA.26.000732

    23., , www.comsol.com.

    24. Colas des Francs, G., et al., "Optical analogy to electronic quantum corrals," Physical Review Letters, Vol. 86, 4950-4953, 2001.
    doi:10.1103/PhysRevLett.86.4950

    25. Colas des Francs, G., C. Girard, and A. Dereux, "Theory of near-field optical imaging with a single molecule as a light source," Journal of Chemical Physics, Vol. 117, 4659-4666, 2002.
    doi:10.1063/1.1492795

    26. Yaghjian, A., "Electric dyadic Green's functions in the source region," Proceedings of the IEEE, Vol. 68, 248-263, 1980.
    doi:10.1109/PROC.1980.11620

    27. Massa, E., T. Roschuk, S. Maier, and V. Giannini, "Discrete-dipole approximation on a rectangular cuboidal point lattice: Considering dynamic depolarization," Journal of the Optical Society of America A, Vol. 1, 135-140, 2014.
    doi:10.1364/JOSAA.31.000135

    28. Jin, J.-M., The Finite Element Method in Electromagnetics, Wiley IEEE Press, New York, 2002.

    29. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic-waves," Journl of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
    doi:10.1006/jcph.1994.1159

    30. Ould Agha, Y., F. Zolla, A. Nicolet, and S. Guenneau, "On the use of PML for the computation of leaky modes: An application to microstructured optical fibres," COMPEL (The International Journal for Computation and Mathematics in Electrical and Electronic Engineering), Vol. 27, No. 1, 95-109, 2008.
    doi:10.1108/03321640810836672

    31. Nicolet, A., F. Zolla, Y. Ould Agha, and S. Guenneau, "Geometrical transformations and equivalent materials in computational electromagnetism," COMPEL (The International Journal for Computation and Mathematics in Electrical and Electronic Engineering), Vol. 27, No. 4, 806-819, 2008.
    doi:10.1108/03321640810878216

    32. Johnson, P. and R. Christy, "Optical constants of the noble metals," Physical Review B, Vol. 6, 4370-439, 1972.

    33. Stout, B., J. C. Auger, and A. Devilez, "Recursive T matrix algorithm for resonant multiple scattering: Applications to localized plasmon excitations," Journal of the Optical Society of America A, Vol. 25, 2549-2557, 2008.

    34. Ditlbacher, H., et al., "Silver nanowires as surface plasmon resonators," Physical Review Letters, Vol. 95, 257403, 2005.
    doi:10.1103/PhysRevLett.95.257403

    35. Novotny, L., "Effective wavelength scaling for optical antennas," Physical Review Letters, Vol. 98, 266802, 2007.
    doi:10.1103/PhysRevLett.98.266802

    36. Cubukcu, E. and F. Capasso, "Optical nanorod antennas as dispersive one-dimensional Fabry-Perot resonators for surface plasmons," Applied Physics Letters,, Vol. 95, 201101, 2009.
    doi:10.1063/1.3262947

    37. Lal, S., N. K. Grady, G. P. Goodrich, and N. J. Halas, "Profiling the near field of a plasmonic nanoparticle with raman-based molecular rulers," Nano Letters, Vol. 6, 2338-2343, 2006.
    doi:10.1021/nl061892p

    38. Deeb, C., et al., "Quantitative analysis of localized surface plasmons based on molecular probing," ACS Nano, Vol. 4, 4579-4586, 2010.
    doi:10.1021/nn101017b

    39. Garcia de Abajo, F. and M. Kociak, "Probing the photonic local density of states with electron energy loss spectroscopy," Physical Review Letters, Vol. 100, 106804, 2008.
    doi:10.1103/PhysRevLett.100.106804

    40. Bouhelier, A., G. Colas des Francs, and J. Grandidier, "Plasmonics, from basics to advanced topics," Springer Series in Optical Sciences, Vol. 167, Chap. Surface Plasmon Imaging, 225-268, Springer, 2012.

    41. Barnes, W., "Fluorescence near interfaces: The role of photonic mode density," Journal of Modern Optics, Vol. 45, 661-699, 1998.
    doi:10.1080/09500349808230614

    42. Viarbitskaya, S., et al., "Tailoring and imaging the plasmonic local density of states in crystalline nanoprisms ," Nature Materials, Vol. 12, 426-432, 2013.
    doi:10.1038/nmat3581

    43. Lim, J., et al., "Imaging and dispersion relations of surface plasmon modes in silver nanorods by near-field spectroscopy," Chemical Physics Letters, Vol. 1412, 41-45, 2005.
    doi:10.1016/j.cplett.2005.06.094

    44. Weeber, J.-C., C. Girard, A. Dereux, J. Krenn, and J. P. Goudonnet, "Near-field optical properties of localized plasmons around lithographically designed nanostructures," Journal of Applied Physics, Vol. 86, 2576-2583, 1999.
    doi:10.1063/1.371095

    45. Gay-Balmaz, P. and O. Martin, "Validity of non-retarded Green's tensor for electromagnetic scattering at surfaces," Optics Communications, Vol. 184, 37-47, 2000.
    doi:10.1016/S0030-4018(00)00932-9

    46. Alegret, J., M. Kall, and P. Johansson, "Top-down extended meshing algorithm and its applications to Green's tensor nano-optics calculations," Physical Review E, Vol. 75, 046702, 2007.
    doi:10.1103/PhysRevE.75.046702