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Near-Field Properties of Plasmonic Nanostructures
with High Aspect Ratio
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Abstract—Using the Green’s dyad technique based on cuboidal meshing, we compute the
electromagnetic field scattered by metal nanorods with high aspect ratio. We investigate the effect
of the meshing shape on the numerical simulations. We observe that discretizing the object with cells
with aspect ratios similar to the object’s aspect ratio improves the computations, without degrading the
convergency. We also compare our numerical simulations to finite element method and discuss further
possible improvements.

1. INTRODUCTION

Plasmonic nanostructures concentrate light on subwavelength scales [1, 2], opening the way to promising
applications such as nano-optical antennas [3, 4], or surface enhanced spectroscopies [5,6]. In the last
decade, important efforts have been done in modeling these structures [7]. Particularly, the electric field
rapidly decays away from the metal surface so that dedicated methods have to be developed to correctly
describe near-field optics properties of plasmonic systems. Additionally, high aspect ratio shapes are
often needed to tune resonance frequencies [8,9]. Fast field decay and high aspect ratio lead to serious
numerical difficulties for methods based on the discretization of the object volume, notably in term of
memory cost and computational time.

We are specifically interested in the Green’s dyad technique (GDT) (also called volume integral
method) [10] since it naturally satisfies boundary conditions both at the object surfaces and in the far-
field. Moreover, it easily includes a substrate supporting nanoparticles without the need to discretize
it [11]. In addition, as far as the Green’s dyadic is numerically computed in the source (nanostructures)
region, all the electromagnetic properties of the system are easily obtained with practically almost no
additional computing cost [12]. This concerns obviously the electric and magnetic fields in the very
near-field of the object [13] but also scattering properties in the radiation zone [14, 15]. Last, the local
density of optical states (LDOS), an intrinsic property of the nanostructure, is also easily deduced from
this formalism [16].

Recent works were devoted to improve the GDT when applied to metallic nanostructures. The
GDT relies on the discretization of the scatterers. Because of strongly varying fields, the key point is to
correctly describe the fast variation of the Green’s tensor over an elementary cell. Let us mention
the regularization scheme proposed by Kottmann and Martin developed for 2D-elements but also
transposable to 3D-nanostructures [17]. Instead of regularizing the Green’s tensor, Chaumet and
coworkers directly computed its integral over the volume of cubic meshes [18]. To this aim, they
considered a Weyl expansion of the tensor and performed a numerical integration in the reciprocical
k-space. In the present work, we first transform the volume integral to a surface integral over a cuboidal
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mesh [19] before a numerical evaluation in direct space. This avoids the singularity at the mesh center
and convergence difficulties. Moreover, this permits to consider more complex meshing. Note finally
that our method differs from surface integral method (also called boundary element method) where the
object surface is discretized, including the substrate if necessary [20-22]. Surface integral method relies
on the introduction of equivalent surface currents that depends on the excitation field. Differently, the
volume integral method relies on a volume discretization of the object, excluding the substrate, but in
the present work involves integration over the surface of the meshes. This leads to the evaluation of the
Green’s dyad associated to the whole structure that is independent on the illumination conditions so
that various problem can be treated by post-processing.

In the following, we define a benchmark configuration that consists of a silver nanorod. In order
to assess the reliability of our results, we compare our numerical simulations to those obtained using
a commercial software (COMSOL Multiphysics) based on the finite element method (FEM) [23]. The
objective of this comparison is twofold. FEM efficiently considers complex shape but necessitates a
careful design and positioning of a perfectly matched layer (PML) to avoid artefact reflexion at the
boundaries of the computational window. As we will see, it becomes a very sensitive parameter in
presence of a substrate. On the opposite, GDT easily considers nanostructures deposited on a substrate
but is generally limited to simpler shapes. By comparing the two methods, we are able to estimate the
error. Reciprocally, this validates the choice of the PML included in the FEM calculations.

2. NUMERICAL METHODS

2.1. Green’s Dyadic Technique

We consider an object immersed in a homogeneous background medium. The addition of a substrate
will be discussed later. The object and background are assumed nonmagnetic (1 = 1) with a relative
permittivity, e and epg, respectively. In the following, we assume an exp(—iwt) time harmonic dependence
for the fields. The Green’s dyad represents the electromagnetic response to an elementary excitation.
Physically, the electric field scattered at the position r in presence of a point-like dipolar source pg
located at rg follows )

E(r) = ]ZSG(IEFO) * Po, (1)
where ¢ is the free-space permittivity, kg the free-space wavenumber, and G(r,rg) the Green’s tensor
associated with the whole system. It is an intrinsic electromagnetic quantity of the object, independent
on the excitation process. For instance the local density of mode is given by [24, 25]

plr,w) = —Tm[G(r,r)]. 2)

In addition, if the object is excited by an incident electric field Eq, the electric field can be expressed
everywhere in the system by a 3D integral

E(r) = Eo(r) + k2 ///Object G (r,r') - AeEo (r') dr’, (3)

with Ae = ¢(r) — ep. Finally, the main numerical task is the evaluation of the tensor G for every couple
of points (r,r’). The Green’s tensor can be computed by solving the self-consistent Dyson’s equation

G (r,r') = Go (r,r') + k3 ///b tGO (r,r") - Ae- G (x", 1) dr”, (4)
objec

where Go is the free-space Green’s dyad, which is analytical. In order to solve Dyson’s Equation (4),
the object is discretized into N cells of volume Vi (k=1,...,N);

N
G (r,r) = Go (r,7') + &} Z G (r,ri) - Ae- G (ry,r'),  with (5)

p
Gt (r 1) = / / /V , Go (r, ri') dr”. (6)
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Depending on the object shape, different meshes can be used. In case of spherical cells, the integral of
the Green’s tensor over a sphere of radius ay, centered at ry is analytical and writes [19]

G})“t(r7 rx) = CyGo(r,rk), with (7)

4 in(k
7T2ak <Sln( Bak) _ cos(kBak)> ,  where kg = \/Eko- (8)
k% kpay,

Cy =

C} is a geometrical factor that reduces to the sphere volume Cj = 477@% /3 = Vi, of subwavelength size
(kpar < 1). In this case, the discretized Dyson’s Equation (5) reduces to [7,10]

N
G (r,r') = Go (r,7') + &} ZVkGO (r,rk) - Ae- G (ri,1') . 9)
k=1

However, when plasmonic objects with high aspect ratio are considered, it is preferable to use
elongated cells. And the volume integral Eq. (6) has to be numerically evaluated. This is rather difficult
because of the singularity of the Green’s tensor that occurs when the source and the observation points
coincide (r' =r) [26]. In a similar context, Chaumet et al. used a Weyl expansion of the Green’s tensor
to perform the numerical integration of Eq. (6) in the reciprocal k-space [18]. More recently, Massa and
coworkers derived an approximate analytical expression for the polarisability of a cuboidal cell [27].

In the present work, we first transform the volume integral to a surface integral over the (cuboidal)
cell surface before a numerical evaluation in direct space. This avoids the singularity at the cell center
and convergence difficulties. )

In 2005, Gao et al. demonstrated that this volume integral G§** can be converted into a (flux)
surface integral thanks to Ostrogradsky’s theorem [19]

Gint (1) = / / ; Go (r,x")dr" = -D (r) + / /S e (r,1") dr”". (10)

where D(r) = 1/k% if the observation point is within the integration volume (r € V;) and is null
elsewhere. For a rectangular parallelepiped mesh (a x b X ¢), centered at the point r. = (z¢, ye, 2¢), the
surface integral term writes for instance

' Yetb/2 pzete/2 (0 _ To—a)2 etkBRot tkp Ry — 1
it (0 — - k [ /2) - ( ) (11)
kg Jye—bj2 Jze—c/2 el
_ . 2 ZkBRZQ k T
(-2t a/2) - (tkpRyo — )} dzodyo. (12)
T2

with Rp1o = [ — 2. £ a/2)% + (y — v0)? + (2 — 20)?]"/? and =+ refers to either R, (plus sign) or
R;2 (minus sign). Such surface integral is efficiently numerically computed using the Gauss-Kronrod
method. The singularity of the Green’s dyad in the source region is properly taken into account in this
approach. Another notable advantage of this approach is that it considerably reduces the memory cost
for evaluating the Green’s dyadic. Finally, different mesh shapes can be considered by adapting the
integral surface. And Dyson’s equation (Eq. (5)) is numerically solved using standard matrix inversion
techniques.

2.2. Finite Element Method

The finite element method is a common numerical tool to study problems related to electromagnetism.
Its main advantage is that it can be applied to irregular geometries. Since a detailed description can be
found in Ref. [28], only a brief introduction will be given here. In classical electromadynamics, FEM is
typically used to solve problems governed by Maxwell’s equations that can be formulated as a vector
wave equation for the electric field

1
VA [uv A E] —kiE = 0. (13)
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The finite element method is based on the discretization of the whole geometry, including the
surrounding medium, by simple elements (such as triangles in two dimensional problems, or tetrahedral
elements in three dimensional problems). The system of equations to be solved can be assembled after
obtaining the weak formulation of the partial differential equations.

However, one of the main difficulties in the finite element analysis of wave problems in open space
is to truncate the unbounded domain. A common approach is to introduce a special layer of finite
thickness surrounding the region of interest such that it is non-reflecting and completely absorbing for
the waves entering this layer under any incidence. Such regions were introduced by Berenger and are
called perfectly matched layers (PML) [29]. The most natural way is to consider PML as a geometrical
transformation that leads to equivalent € and p (that are complex, anisotropic, and inhomogeneous
even if the original ones were real, isotropic, and homogeneous) [30,31]. This leads automatically to an
equivalent medium with the same impedance than the one of the initial ambient medium since ¢ and
w are transformed in the same way. The equivalent € and p ensure that the interface with the layer is
non-reflecting.

3. RESULTS AND DISCUSSION

In the following, we consider a silver nanorod that consists of a cylinder rod capped with hemispherical
ends (see Fig. 1). The diameter of the nanorod is D = 2R and the total length is L so that its aspect
ratio is L/D. In this part of our numerical model, the silver nanorod is immersed in air. We use the
silver dielectric function tabulated by Johnson and Christy [32].

Figure 1. Benchmark problem: a silver nanorod of aspect ratio L/D in air.

We first investigate the near field optical response of the silver nanorod using FEM. The PML
parameters (thickness and position) were determined by benchmarking the calculation of a well-known
object characterized by the exact generalized Mie theory [33] (not shown). Considering dimer test
structures, we achieve an excellent agreement with 50 nm thick spherical PML located at 150 nm from
the nanostructure. We then consider the silver nanorod presented in Fig. 1. A simple way to determine
all the supported modes of the nanostructure is to excite it with an oblique incident plane wave Eg. We
characterize the optical near-field response by computing the electric field intensity at one extremity
(point P in Fig. 1).

Figure 2(a) displays the near-field intensity spectra of the silver nanorod (L = 100nm and
D = 20nm). We observe two surface plasmon polariton (SPP) resonances located around A\ = 440 nm
and A = 682nm. These resonances are in agreement with a Fabry-Perot resonator description [34-36].
The effective indices of the SPP guided along a 20nm silver nanowire are ny = 2.76 and n.g = 3.98
at A = 682nm and A = 440nm, respectively. The cavity modes correspond to resonator lengths
L 426 = mA/(2neg) with m = 1,2,...,m is the mode order and § refers to the field penetration depth
into air. We obtain [m = 1, = 12nm] and [m = 2, = 5nm]| for the two first modes. Note that these
values for 0 reveal that high order modes are strongly confined [2]. Figs. 2(b) and 2(c) represent near-
field intensity maps computed at these resonances located at A = 682nm and A = 440 nm, respectively.
The intensity map at A = 440 nm is not symmetric due to an interference with the incident excitation
field (Fig. 2(c)). The apparent symmetry observed at A = 682nm is simply due to the fact that the
amplitude of the excited mode is stronger than the incident field (Fig. 2(b)).

We now apply the formalism of Green’s method presented in the previous section. The silver
nanorod is discretized with rectangular parallelepipeds of dimensions a x b x ¢. We set b and ¢ equal to
2.5nm in the following, while varying the parameter a from a = 2.5nm to ¢ = 20nm as shown in Fig. 3.
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Figure 2. (a) Near-field intensity spectrum calculated at one extremity (point P in Fig. 1, located 4 nm
away from the silver rod tip). FEM: Finite Element Method. AR = 5.33 and AR = 1 refer to GDT
computation with cell aspect ratio a/b = 5.33 and a/b =1 (b = 2.5 nm), respectively. (b) and (c) Near-
field intensity distribution maps calculated 5nm above the rod surface at the two resonance peaks.
Calculations were performed using finite element method. The incident field is transverse magnetic
(TM) and the incident angle is fixed at w/4. The intensity is normalized with respect to the incident
intensity. The silver rod position is reported (white lines).

The two hemispherical caps are discretized with a = b = ¢ = 2.5nm for each case. Only the central
cylindrical part of the nanorod is meshed with different a values. We use a transitory meshing area
between the cap and the central part. The background is not discretized contrary to FEM calculations.

The near-field spectrum is calculated in Fig. 2(a) for two mesh aspect ratios, namely AR = 1
(a =2.5nm) and AR = 5.33 (a = 13.3nm). We observe an excellent agreement with the FEM calculated
spectrum for the finer discretization, except for a peak near A = 730nm. This peak disappears when
changing the meshing size so that it is easily detected as a numerical artefact. In case of meshing aspect
ratio AR = 5.33, the dipolar resonance (m = 1) is in agreement with the FEM computation. The m = 2
resonance is however slightly blue shifted. We represent the calculated intensity at A = 682nm in Fig. 3
for mesh aspect ratio ranging from 1 to 8. When the aspect ratio of elementary cells is close to the one
of the full object (Fig. 3(c), AR =~ 5) we can reach a very good agreement with the result obtained by
the finite element method (Fig. 2(b)).

Table 1 indicates the number of meshing elements and the computing time for the different aspect
ratios considered here. The computing time linearly increases with the cell number NN since the limiting
operation is the numerical integration of the free-space Green’s tensor over the cuboidal cell (instead
of an increasing time as N2 when the limiting factor is the resolution of the self consistent Dyson’s
Eq. (5)).

Apart from the finest meshing, we obtain the better result for a meshing shape concomitant with
the full object aspect ratio (Fig. 3(c)). We attribute this to the fact that the resonance position of

Table 1. Summary of computational time and the number of cells discretization according to the aspect
ratio of the elementary cell. Computations performed on a Intel X5650 (2.66 GHz) processor.

Aspect ratio 1 2 5.33 8
Number of cells 1944 1112 696 488
Computational time | 3h 13min | 1h 43min | 1h 04 min | 48 min
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Figure 3. Near-field intensity distribution calculated 5nm above the rod surface at the wavelength
A = 682nm. The hemispherical caps are discretized with cubic cells of length 2.5 nm whereas the
central part is discretized with rectangular parallelepipeds of dimensions a X b X ¢ with b = ¢ = 2.5 nm
and different aspect ratio AR = a/b. a varies from a = 2.5nm (AR = 1) to a = 20nm (AR = 8).
Calculations performed using GDT.
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Figure 4. Electric field intensity calculated 4nm away from a single cell (blue curve, ‘one cell’), a
3 x 3 x 3 cells object (red curve ‘27 cells’) and the complete structure (green curve). The cell aspect
ratio is AR = 5.33.

an elementary mesh is close to the object resonance. So the optical response of the whole structure
is qualitatively described by the meshing and the object discretization refines the modelisation with
a scaling law improvement. Fig. 4 represents the near-field intensity when considering a single cell
(AR = 5.33), 27 cells (AR = 5.33) or the full object (AR = 5). Although the localized plasmon
resonance of a silver spherical or cubic nanoparticle is around A\ =~ 350 nm, the elongated cell presents a
strong red shifted resonance around A = 920 nm and the resonance quickly converges to its final value
as the object shape is built up.

Finally, we characterize the field confinement by computing the intensity as a function of distance
to the rod’s extremity in Fig. 5. FEM and GDT with high aspect ratio meshing are in quantitative
agreement. The exponential fit shows a decay distance § = 11 nm in agreement with the value deduced
from the Fabry-Perot resonator model ([m = 1,0 = 12 nm], see above). Note that the exponential
decay is a simple way to characterize the mode confinement but does not refer to the dipolar field
decay [37, 38].
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Figure 6. Near-field intensity distribution calculated 5nm above the rod, at the resonance of the
second mode (A = 440 nm). Calculations performed using GDT with meshes of different aspect ratios
as indicated in the figures.

Figure 6 represents the near-field intensity calculated at A = 440nm for different meshing. We
obtain a good agreement with the FEM-calculated map for the finest meshing (AR = 1 and AR = 2).
Larger mesh aspect ratios are too rough to grasp the fast spatial field variation over the rod length. The
agreement between the FEM and the GDT maps is not fully quantitative, even for the finest meshing
(compare the maximum intensity in Figs. 2(c) and 6(a), 6(b)). Since the optical response is extremely
sensitive to the exact object shape, we attribute this difference to the slight difference of the object
shape due to the meshing. Indeed, GDT relies on a rectangular meshing so that we expect higher
scattering on the edges. The corresponding object roughness is however of the order of rms &~ 1nm
so that the considered meshing is sufficient to describe object obtained within the state of the art of
nanofabrication techniques. Considering a radius of 11 nm instead of 10 nm, we obtain a quantitative
agreement between the FEM (R = 11nm) and GDT (R = 10nm) calculated intensities. We therefore
conclude to the agreement between the two methods, within the nanofabrication tolerance.
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4. LDOS

So far, we discussed the optical response of the metal nanorod to a plane wave excitation. This allows
to detect the plasmon resonance and estimate the field profile of the mode. However, LDOS map
better describes the mode since it is an intrinsic properties of the system. The LDOS is also a key
quantity to interpret electron energy loss spectroscopy (EELS) [39,40] and governs the decay rate of
a quantum emitter in confined system [41]. It can also be manipulated at the nanoscale, opening
promising perspectives to realize original nano-optical devices [42].

Figure 7 represents the LDOS calculated above the nanorod using Eq. (2) at the two resonances
wavelength. As expected, the LDOS maps are symmetric and characterizes the supported modes, with
a number m of node in agreement with the Fabry-Perot resonator description [43]. The normalized
LDOS amplitude of the first mode (up to ~ 1700) is comparable to the normalized electric field intensity
calculated for a plane wave excitation (Fig. 3(a), up to &~ 1400). This again reveals the efficient excitation
of this mode by a plane wave. On the contrary, the second mode is weakly excited by a plane wave,
even at oblique incidence (compare the LDOS magnitude, up to &~ 600 in Fig. 7(b) and the electric
intensity amplitudes, about ten times less in Figs. 6(a) and 6(b)).

60 1600 60 600
- 1400 40 -
01 1200 o
=5 1000 T 400
= 0 = 0
N 800 N | 300
_20 i
600 S5t
100
-60 200 -60
20 0 20

- =20 0 20
Y (nm) Y (nm)
(a) fundamental mode (b) second mode

Figure 7. Total LDOS map calculated 5nm above the rod surface at the two resonance peaks.
Calculations performed using GDT. LDOS is normalized with respect to its free-space value.

5. EFFECT OF THE SUBSTRATE

Finally, we discuss the effect of the substrate on the optical properties. This is an important point since
plasmonic nanostructures are generally supported on a substrate. The presence of the substrate red
shifts the resonance peak [44] so that it has to be taken into account. However, it could lead to difficult
FEM numerical implementation since the field radiatively leaks into the substrate (most refringent
medium) so that it has to be sufficiently discretized and requests important memory resources. On the
opposite, GDT easily takes into account the presence of the substrate without increasing the memory
cost and with a minor increase of the computing time. In the present case where the Green’s dyad
has to be integrated over the mesh surface, it is advantageous to work within the dipole image (quasi-
static) approximation that leads to an excellent agreement with the exact retarded description for
nanostructures laying on a glass substrate [45]. Let us consider a dipole pg = (ps,py,p-) at position
ro = (o, Y0, 20) above a substrate of dielectric constant €gz,p,. The effect of the substrate on the dipole
radiation is described by an image dipole pj,, at ry, = (20, yo, —20) but in the homogeneous background
of dielectric constant eg. If the observation point r is above the substrate, the image dipole to consider
writes Pim = (€sub — €B)/(€sub + €B)(—Pz, —Dy,p-). If the observation point is below the substrate,
the image dipole to consider writes piy, = 2€sup/(€sup + €8)Po- Since the Green’s dyad expresses the
field scattered by a dipolar source, the integrated formulation is easily deduced within the image dipole
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approximation. For instance,

. . € — € .
Gl 0 (r,70) = GiL, (x,70) = 2 G (. Tim), (14)
€sub T €B
for an observation point r above the substrate.

The near-field spectrum of the rod deposited on a glass substrate is calculated in Fig. 8 using
GDT. We observe a strong shift of the resonances to the red. The resonance shift from A = 682nm to
A = T770nm for the fundamental mode and A = 440 nm to A = 476 nm for the second order mode. The
corresponding LDOS maps are represented in Fig. 9. We check that the mode profiles still correspond
to the m =1 and m = 2 SPP modes.
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Figure 8. Near-field intensity spectrum calculated at one silver rod extremity (point P, located 4 nm
away from the silver rod tip). FEM: Finite Element Method. AR = 5.33 and AR = 1: GDT with cell
aspect ratio a/b = 5.33 and a/b =1 (with b = ¢ = 1.6 nm), respectively. The rod is on a glass substrate
of dielectric constant €4, = 2.25. The dotted curve represents the spectrum in absence of the substrate
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Figure 9. Total LDOS map calculated 5nm above the rod surface at the two resonance peaks.
Calculations performed using GDT. The rod is on a glass substrate of dielectric constant ez, = 2.25.

We also plot the near-field spectrum calculated using the FEM (Fig. 8). We observe good agreement
with our GDT calculations except a lower intensity. We again attribute this to the extremely sensitivity
of the optical near-field response to the object shape. By considering a rod radius R = 11 nm, FEM
calculations lead to intensities comparable with GDT data. In addition, we would like to mention that
the introduction of the PML layer is very critical for FEM in presence of the substrate. We observe
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strong variations of the calculated intensity with the PML center position. Best results are obtained
when centering the PML at the rod (scatterer) center. If the PML is centered, e.g., at the glass/air
interface (that corresponds to a 10 nm shift only), the calculated intensity is divided by 2 (not shown).
Therefore, comparison with the GDT allows to determine optimized PML parameters (size and position)
for FEM before considering more complex shapes.

6. CONCLUSION

In summary, we used a dyadic Green technique based on a cuboidal meshing to compute the electric
near-field and the LDOS near a silver nanorod. The fast variations of the electric field in the metallic
nanostructures are well described by a numerical integration of the Green’s tensor over elongated meshes.
Moreover, the computing efforts are reduced by transforming the volume integration over a mesh to a
surface integral. The efficiency and accuracy of this method are verified by comparing our results to
those obtained by using finite element method. This is a confirmation of our technique, but reciprocally
helps to determine the best parameters for FEM (notably PML). Green’s dyad technique presented
in this paper is very convenient, especially in the case of elongated structure (with high aspect ratio).
Moreover, since the meshing has to be increased at positions where the field varies fast, this method
could be advantageously combined with top-down extended meshing algorithms [46]. In addition, the
presence of a substrate is easily taken into account, demonstrating the versatility and efficiency of the
method. Since the method relies on an numerical integration of the Green’s dyad over a mesh surface,
more complex meshing (e.g., tetrahedral) could also be considered, allowing for a better description of
the object shapes. Finally, as soon as the Green’s tensor of the whole structure is calculated, every
electromagnetic responses of the system are easily determined (electric and magnetic near and far field,
LDOS, optical forces, EELS response, ... ).
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