Vol. 145
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2014-02-16
Miniaturization of Antenna for Wireless Application with Difference Metamaterial Structures
By
Progress In Electromagnetics Research, Vol. 145, 19-29, 2014
Abstract
In this paper, periodic structures are investigated in antenna design for wireless applications. These antennas were compared with CRLH miniaturization method. Three different models of patch antenna with coaxial feed on EBG ground, metamaterial substrate or EBG/AMC structure have been presented here. Also two compact dual-band antennas have been designed and fabricated based on CRLH techniques for wireless and GSM applications. The first antenna has directional pattern and operates at 1760, 2550 and 3850 MHz (three-band antenna) with gain 2.1, -3.9 and 2.5 dBi, and it is dual polarized. The size of prototype patch antenna is 20×20 mm2 which is reduced about %47 in comparison to conventional patch antenna at 2.5 GHz. The second antenna is designed by the use of interdigital capacitor and spiral inductor. Dimensions of antenna are 15.5×12 mm2, so the size is reduced about %69 in comparison to conventional microstrip patch antennas at 1.8 GHz. The second tri-band antenna operates at 1060 MHz, 1800 MHz and 2500 MHz in which two frequencies (1.8 and 2.5 GHz) are suitable for GMS and WLAN applications. Both structures have been designed and fabricated on FR4 low cost substrate with εr=4.4 and thickness of 1.6mm. All simulations are done with CST and HFSS. Equivalent circuit and experimental results are also presented and compared.
Citation
Maryam Rahimi, Ferdows B. Zarrabi, Rahele Ahmadian, Zahra Mansouri, and Asghar Keshtkar, "Miniaturization of Antenna for Wireless Application with Difference Metamaterial Structures," Progress In Electromagnetics Research, Vol. 145, 19-29, 2014.
doi:10.2528/PIER13120902
References

1. Song, X., "Small CPW-fed triple band microstrip monopole antenna for WLAN applications," Microwave and Optical Technology Letters, Vol. 51, No. 3, 747-749, 2009.
doi:10.1002/mop.24166

2. Ren, W., "Compact dual-band slot antenna for 2.4/5 GHz WLAN applications," Progress In Electromagnetics Research B, Vol. 8, 319-327, 2008.
doi:10.2528/PIERB08071406

3. Liu, , J.-C., B.-H. Zeng, C.-Y. Liu, H.-C.Wu, and C.-C. Chang, "A dual-mode aperture-coupled stack antenna for WLAN dual-band and circular polarization applications," Progress In Electromagnetics Research C, Vol. 17, 193-202, 2010.
doi:10.2528/PIERC10100902

4. Ramli, N. H., M. R. Kamarudin, N. A. Samsuri, E. N. Ahyat, A. Y. Abdulrahman, and M. F. B. Jamlos, "A 6.0 GHz small printed monopole antenna for wireless implantable body area network (WiBAN) applications," Progress In Electromagnetics Research C, Vol. 41, 189-200, 2013.
doi:10.2528/PIERC13052811

5. Lee, B. and F. J. Harackiewicz, "Miniature microstrip antenna with a partially filled high permittivity substrate," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 8, 1160-1162, Aug. 2002.
doi:10.1109/TAP.2002.801360

6. Hu, Y., Y. J. Zhang, and J. Fan, "Equivalent circuit model of coaxial probes for patch antennas," Progress In Electromagnetics Research B, Vol. 38, 281-296, 2012.
doi:10.2528/PIERB11121210

7. Xiao, S., B.-Z. Wang, W. Shao, and Y. Zhang, "Bandwidth-enhancing ultralow-profile compact patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3443-3447, Nov. 2005.
doi:10.1109/TAP.2005.858838

8. Alam, M. S., M. T. Islam, and N. Misran, "A novel compact split ring slotted electromagnetic bandgap structure for microstrip patch antenna performance enhancement ," Progress In Electromagnetics Research, Vol. 130, 389-409, 2012.
doi:10.2528/PIER12060702

9. Yu, A., F. Yang, and A. Z. Elsherbeni, "A dual band circularly polarized ring antenna based on composite right and left handed metamaterial," Progress In Electromagnetics Research, Vol. 78, 73-81, 2008.
doi:10.2528/PIER07082902

10. Sayem, A. T. M. and M. Ali, "Characteristics of a microstrip-fed miniature printed Hilbert slot antenna," Progress In Electromagnetics Research, Vol. 56, 1-18, 2006.
doi:10.2528/PIER05041801

11. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

12. Buell, K., H. Mosallaei, and K. Sarabandi, "A substrate for small patch antennas providing tunable miniaturization factors," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 1, 135-146, 2006.
doi:10.1109/TMTT.2005.860329

13. Bilotti, F., A. Alu, and L. Vegni, "Design of miniaturized metamaterial patch antennas with mu-negative loading," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 6, 1640-1647, 2008.
doi:10.1109/TAP.2008.923307

14. Gurel, L., A. Unal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.
doi:10.2528/PIER09060106

15. Majid, H. A., M. K. Abd Rahim, and T. Masri, "Microstrip antenna's gain enhancement using left-handed metamaterial structure," Progress In Electromagnetics Research M, Vol. 8, 235-247, 2009.
doi:10.2528/PIERM09071301

16. Zhao , L., D. Yang, H. Tian, Y. Ji, and K. Xu, "A pole and AMC point matching method for the synthesis of HSF-UC-EBG structure with simultaneous AMC and EBG properties," Progress In Electromagnetics Research, Vol. 133, 137-157, 2013.
doi:10.2528/PIER12062406

17. Ouedraogo, R. O., E. J. Rothwell, A. R. Diaz, K. Fuchi, and A. Temme, "Miniaturization of patch antennas using a metamaterial-inspired technique," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 5, 2175-2182, 2012.
doi:10.1109/TAP.2012.2189699

18. Antoniades, M. A. and G. V. Eleftheriades, "A broadband dual-mode monopole antenna using NRI-TL metamaterial loading," IEEE Antennas and Wireless Propagation Letters,", Vol. 8, 258-261, 2009.

19. Niu, J.-X., "Dual-band dual-mode patch antenna based on resonant-type metamaterial transmission line," Electronics Letters, Vol. 46, No. 4, 266-268, 2010.
doi:10.1049/el.2010.3142

20. Zhu, J. and G. V. Eleftheriades, "A compact transmission-line metamaterial antenna with extended bandwidth," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 298-298, 2009.

21. Azimi Fashi, A., M. Kamyab, and M. Barati, "A microstrip small-sized array antenna based on the meta-material zeroth-order resonator," Progress In Electromagnetics Research C, Vol. 14, 89-101, 2010.
doi:10.2528/PIERC10032302

22. Rafael Booket, M., M. Veysi, Z. Atlasbaf, and A. Jafargholi, "Ungrounded composite right-/left-handed metamaterials design, synthesis and applications," IET Microwaves, Antennas and Propagation, Vol. 6, No. 11, 1259-1268, 2012.
doi:10.1049/iet-map.2011.0436

23. Park, J.-H., Y.-H. Ryu, J.-G. Lee, and J.-H. Lee, "Epsilon negative zeroth-order resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3710-3712, 2007.
doi:10.1109/TAP.2007.910505

24. Segovia-Vargas, D., F. J. Herraiz-Martinez, E. Ugarte-Munoz, L. E. Garcia-Munoz, and V. Gonzalez-Posadas, "Quad-frequency linearly-polarized and dual-frequency circularly-polarized microstrip patch antennas with CRLH loading ," Progress In Electromagnetics Research, Vol. 133, 91-115, 2013.
doi:10.2528/PIER12072413

25. Oh, J. and K. Sarabandi, "Low profile, miniaturized, inductively coupled capacitively loaded monopole antenna," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 3, 1206-1213, 2012.
doi:10.1109/TAP.2011.2180313

26. Selvanayagam, M. and G. V. Eleftheriades, "A compact printed antenna with an embedded double-tuned metamaterial matching network," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 7, 2354-2361, 2010.
doi:10.1109/TAP.2010.2048876

27. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114

28. Zhu, J., M. A. Antoniades, and G. V. Eleftheriades, "A compact tri-band monopole antenna with single-cell metamaterial loading," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 4, 1031-1038, 2010.
doi:10.1109/TAP.2010.2041317