Vol. 136

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-02-01

Robust Superdirective Beamforming for HF Circular Receive Antenna Arrays

By Qing-Chen Zhou, Huotao Gao, Huajun Zhang, and Fan Wang
Progress In Electromagnetics Research, Vol. 136, 665-679, 2013
doi:10.2528/PIER12122301

Abstract

Superdirective beamforming can highly reduce the aperture size of high-frequency receive array. At the same time, the closely spaced elements of a small aperture array can make it low efficiency and sensitivity to the array uncertainty, which limit its application in practice. Using a parameter called sensitivity factor, we found that array efficiency and robustness against array error could be considered simultaneously. On that basis, we derive a novel superdirective beamforming criterion based on a constrained sensitivity factor for the HF circular receive array. New method is analytical and computationally inexpensive. Through making the directive gain with a given sensitivity factor maximum, we calculate the optimal weights of the array elements. To illustrate the proposed method can increase the acceptance of HF superdirective receive arrays in practice, several numerical results are provided.

Citation


Qing-Chen Zhou, Huotao Gao, Huajun Zhang, and Fan Wang, "Robust Superdirective Beamforming for HF Circular Receive Antenna Arrays," Progress In Electromagnetics Research, Vol. 136, 665-679, 2013.
doi:10.2528/PIER12122301
http://jpier.org/PIER/pier.php?paper=12122301

References


    1. Qu, Y., et al., "Performance analysis of beamforming for MIMO radar," Progress In Electromagnetics Research, Vol. 84, 123-134, 2008.
    doi:10.2528/PIER08062306

    2. Liang, G., W. Gong, H. Liu, and J. Yu, "Development of 61-channel digital beamforming (DBF) transmitter array for mobile satellite communication ," Progress In Electromagnetics Research, Vol. 97, No. 6, 177-195, 2009.
    doi:10.2528/PIER09082303

    3. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO ," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
    doi:10.2528/PIER12022806

    4. Zaharis, Z. D., C. Skeberis, and T. D. Xenos, "Improved antenna array adaptive beamforming with low side lobe level using a novel adaptive invasive weed optimization method," Progress In Electromagnetics Research, Vol. 126, 269-283, 2012.
    doi:10.2528/PIER12012408

    5. Jabbar, A. N., "A novel ultra-fast ultra-simple adaptive blind beamforming algorithm for smart antenna arrays," Progress In Electromagnetics Research B, Vol. 35, 329-348, 2011.
    doi:10.2528/PIERB11091504

    6. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Comparative study of neural network training applied to adaptive beamforming of antenna arrays ," Progress In Electromagnetics Research, Vol. 126, 269-283, 2012.
    doi:10.2528/PIER12012408

    7. Byrne, D., et al., "Transmitter-grouping robust capon beamforming for breast cancer detection," Progress In Electromagnetics Research, Vol. 108, 401-416, 2010.
    doi:10.2528/PIER10090205

    8. Lu, S., J. Sun, G. Wang, and Y.-L. Lu, "A mixing vector based an affine combination of two adaptive filters for sensor array beamforming," Progress In Electromagnetics Research, Vol. 122, 361-387, 2012.
    doi:10.2528/PIER11090204

    9. Lin, M., K. An, J. Ouyang, Y. Huang, and M. Li, "Effect of beamforming on multi-antenna two hop asymmetric fading channels with fixed gain relays," Progress In Electromagnetics Research, Vol. 133, 367-390, 2013.

    10. Huang, P., W. Xu, and W. Qi, "Two dimension digital beamforming preprocessing in multibeam scansar," Progress In Electromagnetics Research, Vol. 136, 495-508, 2013.

    11. Huang, C.-C. and J.-H. Lee, "Robust adaptive beamforming using a fully data-dependent loading technique," Progress In Electromagnetics Research B, Vol. 37, 307-325, 2012.
    doi:10.2528/PIERB11110406

    12. Lee, J.-H., G.-W. Jung, and W.-C. Tsai, "Antenna array beamforming in the presence of spatial information uncertainties," Progress In Electromagnetics Research B, Vol. 31, 139-156, 2011.

    13. Mallipeddi, R., J. P. Lie, S. G. Razul, P. N. Suganthan, and C. M. S. See, "Robust adaptive beamforming based on covariance matrix reconstruction for look direction mismatch," Progress In Electromagnetics Research Letters, Vol. 25, 37-46, 2011.

    14. Liu, F., et al., "A second-order cone programming approach for robust downlink beamforming with power control in cognitive radio networks ," Progress In Electromagnetics Research M, Vol. 18, 221-231, 2011.

    15. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

    16. Zaharis, Z. D., "A modified Taguchi's optimization algorithm for beamforming applications," Progress In Electromagnetics Research, Vol. 127, 553-569, 2012.
    doi:10.2528/PIER12040108

    17. Li, W.-X., Y.-P. Li, and W.-H. Yu, "On adaptive beamforming for coherent interference suppression via virtual antenna array," Progress In Electromagnetics Research, Vol. 125, 165-184, 2012.
    doi:10.2528/PIER12010802

    18. Mallipeddi, R., et al., "A differential evolution approach for robust adaptive beamforming based on joint estimation of look direction and array geometry," Progress In Electromagnetics Research, Vol. 119, 381-394, 2011.
    doi:10.2528/PIER11052205

    19. Li, J., P. Stoica, and Z. S. Wang, "Doubly constrained robust capon beamformer," IEEE Trans. on Signal Processing, Vol. 52, No. 9, 2407-2423, 2004.
    doi:10.1109/TSP.2004.831998

    20. Barrick, D. E. and P. M. Lilleboe, Circular superdirective receive antenna arrays, Patent No. US 6,844,849 B1, Jan. 18, 2005.

    21. Uzsoky, M. and L. Solymar, "Theory of superdirective linear arrays," Acta Physica, Ac. Hung., Vol. 6, No. 2, 185-205, 1956.
    doi:10.1007/BF03157322

    22. Ma, Y. L., et al., "Theoretical and practical solutions for high-order superdirectivity of circular sensor arrays," IEEE Trans. on Industrial Electronics, Vol. 60, No. 2, 203-209, 2013.
    doi:10.1109/TIE.2012.2185020

    23. Shamoninaa, E., K. H. Ringhoferb, and L. Solymara, "Configurations optimizing the directivity of planar arrays," International Journal of Electronics and Communications, Vol. 56, No. 2, 115-119, 2002.
    doi:10.1078/1434-8411-54100080

    24. Newman, E., J. Richmond, and C. Walter, "Superdirective receiving arrays," IEEE Trans. on Antennas and Propagation, Vol. 26, No. 5, 629-635, 1978.
    doi:10.1109/TAP.1978.1141928

    25. Gilbert, E. N. and S. P. Morgan, "Optimum design of directive antenna arrays subject to random variations," Bell Syst. Tech. Journal, Vol. 34, 637-671, 1955.

    26. Lo, Y. T., S. W. Lee, and Q. H. Lee, "Optimization of directivity and signal-to-noise ratio of an arbitrary antenna array," Proceedings of the IEEE, Vol. 54, No. 8, 1033-1045, 1966.
    doi:10.1109/PROC.1966.4988

    27. Cheng, D. K. and F. I. Tseng, "Gain optimization for arbitrary antenna arrays," IEEE Trans. on Antennas and Propagation, Vol. 15, No. 3, 973-974, 1965.
    doi:10.1109/TAP.1965.1138542

    28. Cox, H., "Robust adaptive beamforming," IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 35, No. 10, 1365-1376, 1987.
    doi:10.1109/TASSP.1987.1165054