Vol. 136
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-01-20
SAR Target Classification Using Bayesian Compressive Sensing with Scattering Centers Features
By
Progress In Electromagnetics Research, Vol. 136, 385-407, 2013
Abstract
The emerging field of compressed sensing provides sparse reconstruction, which has demonstrated promising results in the areas of signal processing and pattern recognition. In this paper, a new approach for synthetic aperture radar (SAR) target classification is proposed based on Bayesian compressive sensing (BCS) with scattering centers features. Scattering centers features are extracted as a l1-norm sparse problem on the basis of the SAR observation physical model, which can improve discrimination ability compared with original SAR image. Using an overcomplete dictionary constructed of training samples, BCS is utilized to design targets classifier. For target classification performance evaluation, the proposed method is compared with several state-of-art methods through experiments on Moving and Stationary Target Acquisition and Recognition (MSTAR) public release database. Experimental results illustrate the effectiveness and robustness of the proposed approach.
Citation
Xinzheng Zhang, Jianhong Qin, and Guojun Li, "SAR Target Classification Using Bayesian Compressive Sensing with Scattering Centers Features," Progress In Electromagnetics Research, Vol. 136, 385-407, 2013.
doi:10.2528/PIER12120705
References

1. An, D. X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

2. Chen, J., J. Gao, Y. Zhu, W. Yang, and P. Wang, "A novel image formation algorithm for high-resolution wide-swath spaceborne SAR using compressed sensing on azimuth displacement phase center antenna," Progress In Electromagnetics Research, Vol. 125, 527-543, 2012.
doi:10.2528/PIER11121101

3. Tian, B., D.-Y. Zhu, and Z.-D. Zhu, "A novel moving target detection approach for dual-channel SAR system," Progress In Electromagnetics Research, Vol. 115, 191-206, 2011.

4. Chiang, C.-Y., Y.-L. Chang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 11, 35-57, 2011.
doi:10.2528/PIER11061507

5. Dudgeon, D.-E. and R.-T. Lacoss, "An overview of automatic target recognition," The Lincoln Laboratory Journal, Vol. 6, 3-9, 1993.

6. Huan, R.-H. and Y. Pan, "Target recognition for multi-aspect SAR images with fusion strategies," Progress In Electromagnetics Research, Vol. 134, 267-288, 2013.

7. Papson, S. and R.-M. Narayanan, "Classification via the shadow region in SAR imagery," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, 969-980, 2012.
doi:10.1109/TAES.2012.6178042

8. Huang, C.-W. and K.-C. Lee, "Application of ICA technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 105, 157-170, 2010.
doi:10.2528/PIER10042305

9. Lee, K.-C., J.-S. Ou, and M.-C. Fang, "Application of SVD noise-reduction technique to PCA based radar target recognition," Progress In Electromagnetics Research, Vol. 81, 447-459, 2008.
doi:10.2528/PIER08032101

10. Runkle, P., L.-H. Nguyen, J.-H. McClellan, and L. Carin, "Multi-aspect target detection for SAR imagery using hidden Markov models," IEEE Trans. on Geoscience and Remote Sensing, Vol. 39, 46-55, 2001.
doi:10.1109/36.898664

11. Liao, X.-J., P. Runkle, and L. Carin, "Identification of ground targets from sequential high-range-resolution radar signatures," IEEE Trans. on Aerospace and Electronic Systems, Vol. 38, 1230-1242, 2002.
doi:10.1109/TAES.2002.1145746

12. Han, S.-K., H.-T. Kim, S.-H. Park, and K.-T. Kim, "Efficient radar target recognition using a combination of range profile and time-frequency analysis ," Progress In Electromagnetics Research, Vol. 108, 131-140, 2010.
doi:10.2528/PIER10071601

13. Potter, L.-C. and R.-L. Moses, "Attributed scattering centers for SAR ATR," IEEE Trans. on Image Processing, Vol. 6, 79-91, 1997.
doi:10.1109/83.552098

14. Gerry, M.-J., L.-C. Potter, I.-J. Gupta, and A.-V. Merwe, "A parametric model for synthetic aperture radar measurements," IEEE Trans. on Antennas and Propagation, Vol. 47, 1179-1188, 1999.
doi:10.1109/8.785750

15. Park, S.-H., S.-H., J.-H. Lee, and K.-T. Kim, "Performance analysis of the scenario-based construction method for real target ISAR recognition," Progress In Electromagnetics Research, Vol. 128, 137-151, 2012.

16. Zhao, Q. and J.-C. Principe, "Support vector machines for SAR automatic target recognition," IEEE Trans. on Aerospace and Electronic Systems, Vol. 37, 643-654, 2001.
doi:10.1109/7.937475

17. Tan, C.-P., J.-Y. Koay, K.-S. Lim, H.-T. Ewe, and H.-T. Chuah, "Classification of multi-temporal SAR images for rice crops using combined entropy decomposition and support vector machine technique," Progress In Electromagnetics Research, Vol. 71, 19-39, 2007.
doi:10.2528/PIER07012903

18. Zhang, Y. and L.Wu, "An MR brain images classifier via principal component analysis and kernel support vector machine," Progress In Electromagnetics Research, Vol. 130, 369-388, 2012.

19. Angiulli, G., D. De Carlo, G. Amendola, E. Arnieri, and S. Costanzo, "Support vector regression machines to evaluate resonant frequency of elliptic substrate integrate waveguide resonators," Progress In Electromagnetics Research, Vol. 83, 107-118, 2008.
doi:10.2528/PIER08041803

20. Wu, Y., Z.-X. Tang, B. Zhang, and Y. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
doi:10.2528/PIER07012801

21. Candès, E.-J. and M.-B. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, 21-30, 2008.
doi:10.1109/MSP.2007.914731

22. Candès, E.-J. and T. Tao, "Decoding by linear programming," IEEE Trans. on Information Theory, Vol. 51, 4203-4215, 2005.
doi:10.1109/TIT.2005.858979

23. Donoho, D.-L., "Compressed sensing," IEEE Trans. on Information Theory, Vol. 52, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582

24. Wei, S.-J., X.-L. Zhang, and J. Shi, "Linear array SAR imaging via compressed sensing," Progress In Electromagnetics Research, Vol. 117, 299-319, 2011.

25. Wright, J., A.-Y. Yang, A. Ganesh, S.-S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 31, 210-227, 2009.
doi:10.1109/TPAMI.2008.79

26. Zhang, S., X. Zhao, and B. Lei, "Robust facial expression recognition via compressive sensing," Sensors, Vol. 12, 3747-3761, 2012.
doi:10.3390/s120303747

27. Zhang, H., N.-M. Nasrabadi, Y. Zhang, and T.-S. Huang, "Multi-view automatic target recognition using joint sparse representation," IEEE Trans. on Aerospace and Electronic Systems, Vol. 48, 2481-2497, 2012.
doi:10.1109/TAES.2012.6237604

28. Ji, S., Y. Xue, and L. Carin, "Bayesian compressive sensing," IEEE Trans. on Signal Processing, Vol. 56, 2346-2356, 2008.
doi:10.1109/TSP.2007.914345

29. Potter, L.-C., E. Ertin, J.-T. Parker, and M. Çetin, "Sparsity and compressed sensing in radar imaging," Proceedings of the IEEE, Vol. 98, 1006-1020, 2010.
doi:10.1109/JPROC.2009.2037526

30. Zhou, J., Z. Shi, X. Cheng, and Q. Fu, "Automatic target recognition of SAR images based on global scattering center model," IEEE Trans. on Geoscience and Remote Sensing, Vol. 49, No. 10, 3713-3729, 2011.
doi:10.1109/TGRS.2011.2162526

31. Çetin, M. and W.-C. Karl, "Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization," IEEE Trans. on Image Processing, Vol. 10, 623-631, 2001.
doi:10.1109/83.913596

32. Chen, S.-S., D.-L. Donoho, and M.-A. Saunders, "Atomic decomposition by basis pursuit," SIAM Review, 129-159, 2001.
doi:10.1137/S003614450037906X

33. Tibshirani, R., "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), Vol. 58, 267-288, 1996.

34. Tipping, M.-E., "Sparse Bayesian learning and the relevance vector machine," Journal of Machine Learning Research, Vol. 1, 211-244, 2001.

35. Xu, J., Y. Pi, and Z. Cao, "Bayesian compressive sensing in synthetic aperture radar imaging," IET Radar, Sonar & Navigation, Vol. 6, 2-8, 2012.
doi:10.1049/iet-rsn.2010.0375

36. Zhao, Q., J.-C. Principe, V.-L. Brennan, D. Xu, and Z. Wang, "Synthetic aperture radar automatic target recognition with three strategies of learning and representation," Optical Engineering, Vol. 39, 1230-1244, 2000.
doi:10.1117/1.602495