Vol. 132
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-10-16
Coupling Effect for Dielectric Metamaterial Dimer
By
Progress In Electromagnetics Research, Vol. 132, 587-601, 2012
Abstract
In this paper, we report experimentally and numerically on coupling effects of dielectric metamaterial dimer (metadimer) which composed of two identical ceramic cubes with high permittivity. The distance dependence of Mie resonance for metadimer is investigated under various polarizations of external wave. By changing the configurations and alignment of dimer resonator, it is revealed that magnetic and electric resonances of metadimer exhibits a red/blue shift, resulting from longitudinal or transverse coupling effects of dipoles. Besides, quasi bound states between tightly stacked dielectric cubes are also been pointed out for electric Mie resonance, which is responsible for an unexpected frequency shift with a reverse variation.
Citation
Fuli Zhang, Veronique Sadaune, Lei Kang, Qian Zhao, Ji Zhou, and Didier Lippens, "Coupling Effect for Dielectric Metamaterial Dimer," Progress In Electromagnetics Research, Vol. 132, 587-601, 2012.
doi:10.2528/PIER12081304
References

1. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
doi:10.1126/science.1058847

2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

3. Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Polarization insensitive metamaterial absorber with wide incident angle," Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
doi:10.2528/PIER10011110

4. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

5. Huang, L. and H. Chen, "Multi-band and polarization insensitive metamaterial absorber," Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.

6. He, X.-J., Y. Wang, J. Wang, T. Gui, and Q. Wu, "Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle," Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.

7. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2084, 1999.
doi:10.1109/22.798002

8. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773

9. Marqués, R., F. Mesa, J. Martel, and F. Medina, "Comparative analysis of edge and broadside coupled split ring resonators for metamaterial design --- Theory and experiments," IEEE Trans. Antennas Propag., Vol. 51, 2572-2581, 2003.
doi:10.1109/TAP.2003.817562

10. Chen, H., L.-X. Ran, J. T. Huang-Fu, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Magnetic properties of S-shaped split-ring resonators," Progress In Electromagnetics Research, Vol. 51, 231-247, 2005.
doi:10.2528/PIER04051201

11. Chen, H., L. Ran, J. Huangfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Left-handed materials composed of only S-shaped resonators," Phys. Rev. E, Vol. 70, 057605, 2004.
doi:10.1103/PhysRevE.70.057605

12. Feng, T., Y. Li, H. Jiang, W. Li, F. Yang, X. Dong, and H. Chen, "Tunable single-negative metamaterials based on microstrip transmission line with varactor diodes loading," Progress In Electromagnetics Research, Vol. 120, 35-50, 2011.

13. Ourir, A., R. Abdeddaim, and J. de Rosny, "Tunable trapped mode in symmetric resonator designed for metamaterials," Progress In Electromagnetics Research, Vol. 101, 115-123, 2010.
doi:10.2528/PIER09120709

14. Smith, D. R., S. Schultz, P. Marko·s, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

15. Chen, X., T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Phys. Rev. E, Vol. 70, 016608, 2004.
doi:10.1103/PhysRevE.70.016608

16. Croënne, C., B. Fabre, D. Gaillot, O. Vanbésien, and D. Lippens, "Bloch impedance in negative index photonic crystals," Phys. Rev. B, Vol. 77, 125333, 2008.
doi:10.1103/PhysRevB.77.125333

17. Liu, H., J. X. Cao, S. N. Zhu, N. Liu, R. Ameling, and H. Giessen, "Lagrange model for the chiral optical properties of stereometamaterials," Phys. Rev. B, Vol. 81, 241403(R), 2010.

18. Liu, H., Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, "Coupled magnetic plasmons in metamaterials," Phys. Status Solidi B, Vol. 246, 1397, 2009.
doi:10.1002/pssb.200844414

19. Liu, N. and H. Giessen, "Coupling effects in optical metamaterials," Angew. Chem. Int. Ed., Vol. 49, 9838-9852, 2010.
doi:10.1002/anie.200906211

20. Feth, N., M. König, M. Husnik, K. Stannigel, J. Niegemann, K. Busch, M. Wegener, and S. Linden, "Electromagnetic interaction of split-ring resonators: The role of separation and relative orientation," Opt. Express, Vol. 18, 6545-6554, 2010.
doi:10.1364/OE.18.006545

21. Sersic, I., M. Frimmer, E. Verhagen, and A. F. Koenderink, "Electric and magnetic dipole coupling in near-infrared split-ring metamaterial arrays ," Phys. Rev. Lett., Vol. 103, 213902, 2010.
doi:10.1103/PhysRevLett.103.213902

22. Carbonell, J., E. Lheurette, and D. Lippens, "From rejection to transmission with stacked arrays of split ring resonators," Progress In Electromagnetics Research, Vol. 112, 215-224, 2011.

23. Zhang, F., Q. Zhao, J. Sun, J. Zhou, and D. Lippens, "Coupling effect of split ring resonator and its mirror image," Progress In Electromagnetics Research, Vol. 124, 233-247, 2012.
doi:10.2528/PIER11121808

24. Lewin, L., "The electrical constants of a material loaded with spherical particles," Proc. Inst. Electr. Eng., Vol. 94, 65-68, 1947.

25. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1998.

26. O'Brien, S. and J. B. Pendry, "Photonic band-gap effects and magnetic activity in dielectric composites," J. Phys. Condens. Matt., Vol. 14, 4035-4044, 2002.
doi:10.1088/0953-8984/14/15/317

27. Holloway, C. H., E. F. Kuester, J. Baker-Jarvis, and P. Kabos, "A double negative (dng) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propag., Vol. 51, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

28. Zhao, Q., J. Zhou, F. Zhang, and D. Lippens, "Mie resonance-based dielectric metamaterial," Mater. Today, Vol. 12, 36-45, 2009.
doi:10.1016/S1369-7021(09)70318-9

29. Liu, L., J. Sun, X. Fu, J. Zhou, Q. Zhao, B. Fu, J. Liao, and D. Lippens, "Artificial magnetic properties of dielectric metamaterials in terms of effective circuit model," Progress In Electromagnetics Research, Vol. 116, 159-170, 2011.

30. Kang, L., V. Sadaune, and D. Lippens, "Numerical analysis of enhanced transmission through a single subwavelength aperture based on mie resonance single particle," Progress In Electromagnetics Research, Vol. 113, 211-226, 2011.

31. Lepetit, T., E. Akmansoy, and J.-P. Ganne, "Experimental measurement of negative index in an all-dielectric metamaterial," Appl. Phys. Lett., Vol. 95, 121101, 2009.
doi:10.1063/1.3232222

32. Lin, X. Q., T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett., Vol. 92, 131904, 2008.
doi:10.1063/1.2896308

33. Kozlov, D. S., M. A. Odit, I. B. Vendik, Y.-G. Roh, S. Cheon, and C.-W. Lee, "Tunable terahertz metamaterial based on resonant dielectric inclusions with disturbed Mie resonance," Appl. Phys. A, Vol. 106, 465-470, 2012.
doi:10.1007/s00339-011-6716-2

34. Peng, L., L. Ran, H. Chen, H. Zhang, J. A. Kong, and T. M. Grzegorczyk, "Experimental observation of left-handed behavior in an array of standard dielectric resonators," Phys. Rev. Lett., Vol. 98, 157403, 2007.
doi:10.1103/PhysRevLett.98.157403

35. Zhao, Q., L. Kang, B. Du, H. Zhao, Q. Xie, X. Huang, B. Li, J. Zhou, and L. Li, "Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite," Phys. Rev. Lett., Vol. 101, 027402, 2008.
doi:10.1103/PhysRevLett.101.027402

36. Zhang, F., Q. Zhao, L. Kang, J. Zhou, and D. Lippens, "Experimental verification of isotropic and polarization properties of high permittivity-based metamaterial," Phys. Rev. B, Vol. 80, 195119, 2009.
doi:10.1103/PhysRevB.80.195119

37. Schuller, J. A., R. Zia, T. Taubner, and M. L. Brongersma, "Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles," Phys. Rev. Lett., Vol. 99, 107401, 2007.
doi:10.1103/PhysRevLett.99.107401

38. Popa, B.-I. and S. A. Cummer, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. Lett., Vol. 100, 207401, 2008.
doi:10.1103/PhysRevLett.100.207401

39. Ginn, J. C., I. Brene, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, "Realizing optical magnetism from dielectric metamaterials," Phys. Rev. Lett., Vol. 108, 097402, 2012.
doi:10.1103/PhysRevLett.108.097402

40. Miroshnichenko, A. E., B. Luk'yanchuk, S. A. Maier, and Y. S. Kivshar, "Optically induced interaction of magnetic moments in hybrid metamaterials," Acs Nano, Vol. 6, 837-842, 2012.
doi:10.1021/nn204348j

41. Lai, Y. J., C. K. Chen, and T. J. Yen, "Creating negative refractive identity via single dielectric resonators," Opt. Express, Vol. 17, 12960-12970, 2009.
doi:10.1364/OE.17.012960

42. Wheeler, M. S., J. S. Aitchison, and M. Mojahedi, "Coupled magnetic dipole resonances in sub-wavelength dielectric particle clusters," J. Opt. Soc. Am. B, Vol. 27, 1083-1091, 2010.
doi:10.1364/JOSAB.27.001083

43. Zhang, F., L. Kang, Q. Zhao, J. Zhou, and D. Lippens, "Magnetic and electric coupling effects of dielectric metamaterial," New J. Phys., Vol. 14, 033031, 2012.
doi:10.1088/1367-2630/14/3/033031

44. Cao, L., P. Fan, and M. L. Brongersma, "Optical coupling of deep-subwavelength semiconductor nanowires," Nano Lett., Vol. 11, 1461-1468, 2010.

45. Hao, E. and G. C. Schatz, "Electromagnetic fields around silver nanoparticles and dimmers," J. Chem. Phys., Vol. 120, 357-366, 2004.
doi:10.1063/1.1629280