submit Submit login
Vol. 131
Latest Volume
All Volumes
PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-09-05
Two-Phase Low Conductivity Flow Imaging Using Magnetic Induction Tomography
By
Progress In Electromagnetics Research, Vol. 131, 99-115, 2012
Abstract
Magnetic Induction Tomography (MIT) is a new and emerging type of tomography technique that is able to map the distribution of all three passive electromagnetic properties, however most of the current interests are focusing on the conductivity and permeability imaging. In an MIT system, coils are used as separate transmitters or sensors, which can generate the background magnetic field and detect the perturbed magnetic field respectively. Through switching technique the same coil can work as transceiver which can generate field at a time and detect the field at another time. Because magnetic field can easily penetrate through the non-conductive barrier, the sensors do not need direct contact with the imaging object. These non-invasive and contactless features make it an attractive technique for many applications compared to the traditional contact electrode based electrical impedance tomography. Recently, MIT has become a promising monitoring technique in industrial process tomography, for example MIT has been used to determine the distribution of liquidised metal and gas (high conductivity two phase flow monitoring) for metal casting applications. In this paper, a low conductivity two phase flow MIT imaging is proposed so the reconstruction of the low contrast samples (< 6 S/m) can be realised, e.g. gas/ionised liquid. An MIT system is developed to test the feasibility. The system utilises 16 coils (8 transmitters and 8 receivers) and an operating frequency of 13 MHz. Three dierent experiments were conducted to evaluate all possible situations of two phase flow imaging: 1) conducting objects inside a non-conducting background, 2) conducting objects inside a conducting ackground (low contrast) and 3) non-conducting objects inside a conducting background. Images are reconstructed using the linearised inverse method with regularisation. An experiment was designed to image the non-conductive samples inside a conducting background, which is used to represent the size varying bubbles in ionised solution. The temporal reconstruction algorithm is used in this dynamic experiment to improve the image accuracy and noise performance.
Citation
Hsin-Yu Wei, and Manuchehr Soleimani, "Two-Phase Low Conductivity Flow Imaging Using Magnetic Induction Tomography," Progress In Electromagnetics Research, Vol. 131, 99-115, 2012.
doi:10.2528/PIER12070615
References

1. Griffths, , H., "Magnetic induction tomography," Institute of Physics Publishing Meas. Sci. Technol.,, Vol. 12, 1126-1131, Dec. 2001.
doi:10.1088/0957-0233/12/8/319

2. Ortiz-Aleman, , C., R. Martin, and , "Electrical capacitance tomography two-phase oil-gas pipe flow imaging by the linear back-projection algorithm," Journal of Geophysics and Engineering, Vol. 2, 32-37, , 2005.
doi:10.1088/1742-2132/2/1/005

3. Kim, , M. C., H. J. Lee, Y. J. Lee, and K. Y. Kim, , "An experimental study of electrical impedance tomography for the two-phase flow visualization," International Communications in Heat and Mass Transfer, Vol. 29, No. 2, 193-202, , 2002..
doi:10.1016/S0735-1933(02)00310-X

4. Terzija, , N., W. Yin, G. Gerbeth, F. Stefani, K. Timmel, T. Wondrak, and A. J. Peyton, "Electromagnetic inspection of a two-phase flow of GaInSn and Argon," Flow Measurement and Instrumentation, Vol. 22, No. 3, 10-16, , 2011.
doi:10.1016/j.flowmeasinst.2010.10.003

5. Wondrak, , T., S. Eckert, G. Gerbeth, K. Klotsche, F. Stefani, K. Timmel, A. J. Peyton, N. Terzija, and W. Yin, "Combined electromagnetic tomography for determining two-phase flow characteristics in the submerged entry nozzle and in the mold of a continuous casting model," Metallurgical and Materials Transactions B, Vol. 44, No. 6, 1201-1210, 2011.
doi:10.1007/s11663-011-9553-y

6. Watson, , S., R. J. Williams, W. A. Gough, and H. Griffths, "A magnetic induction tomography system for samples with conductivities less than 10 S/m-1," Measurement Science and Technology,, Vol. 19, 045501-1, 2008.

7. Liu, , Z., M. He, and H. Xiong, "Simulation study of the sensing fileld in electromagnetic tomography for two-phase flow measurement," Flow Measurement and Instrumentation,, Vol. 16, 199-204, , 2005.
doi:10.1016/j.flowmeasinst.2005.02.008

8. Wei, , H. Y., M. Soleimani, and , "Hardware and software design for a national instruments based magnetic induction tomography system for prospective biomedical applications," Physiological Measurement,, Vol. 33, No. 5, 863-879, 2012.
doi:10.1088/0967-3334/33/5/863

9. Gursoy, , D., H. Scharfetter, and , "Imaging artifacts in magnetic induction tomography caused by the structural incorrectness of the sensor model," Measurement Science and Technology, Vol. 22, No. 1, 2011..
doi:10.1088/0957-0233/22/1/015502

10. Soleimani, , M., W. R. B. Lionheart, A. J. Peyton, and X. Ma, "A 3D inverse finite element technique applied to experimental magnetic induction tomography data," 4th World Congress on Industrial Process Tomography, , 1054-1059, 2005.

11. Soleimani, , M., "Sensitivity maps in three-dimensional magnetic induction tomography," Insight, Vol. 48, , No. 1, 39-44, Jan. 2006..
doi:10.1784/insi.2006.48.1.39

12. Kameari, , A., , "Regularization on ill-posed source terns in FEM computation using two magnetic vector potentials," IEEE Transaction on Magnetics, Vol. 40, No. 2, 1310-1313, 2004.
doi:10.1109/TMAG.2004.824712

13. Biro, O., J. Preis, and , "On the use of the magnetic vector potential in the ¯nite element analysis of three-dimensional eddy currents," IEEE Transaction on Magnetics, Vol. 25, No. 4, 3145-1359, 1989.
doi:10.1109/20.34388

14. Biro, , O., , "Edge element formulations of eddy current problems," Comput. Methods Appl. Mech. Engrg. , Vol. 169, 391-405, 1999.
doi:10.1016/S0045-7825(98)00165-0

15. Biro, , O., K. Preis, and , "An edge finite element eddy current formulation using a reduced magnetic and a current vector potential," IEEE Transaction on Magnetics, , Vol. 36, No. 5, 3128-3130, 2000.
doi:10.1109/20.908708

16. Wei, H. Y., M. Soleimani, and , "Three dimensional magnetic induction tomography imaging using a matrix free Krylov subspace inversion algorithm," Progress In Electromagnetics Research, Vol. 122, 29-45, 2012..
doi:10.2528/PIER11091513

17. Goharian, , M., M. Soleimani, and G. R. Moran, "A trust region subproblem for 3d electrical impedance tomography inverse problem using experimental data," Progress In Electromagnetics Research, Vol. 94, 19-32, 2009.
doi:10.2528/PIER09052003

18. Flores-Tapia, , D., M. O'Halloran, and S. Pistorius, "A bimodal reconstruction method for breast cancer imaging," Progress In Electromagnetics Research, Vol. 118, 461-486, 2011.
doi:10.2528/PIER11050408

19. Ping, , X. W., T. J. Cui, and , "The factorized sparse approximate inverse preconditioned conjugate gradient algorithm for inite element analysis of scattering problems," Progress In Electromagnetics Research, Vol. 98, 15-31, 2009.
doi:10.2528/PIER09071703

20. Liu, , Z., Q. H. Liu, C. H. Zhu, and J. Yang, "A fast inverse polynomial reconstruction method based on conformal fourier transformation," Progress In Electromagnetics Research,, Vol. 122, 119-136, , 2012..
doi:10.2528/PIER11092008

21. Tatarskii, V. I., "Use of semi-inversion method for the dirichlet problem in rough surface scattering," Progress In Electromagnetics Research, Vol. 54, 109 -135, 2005.
doi:10.2528/PIER04110802

22. Banasiak, , R., R. Wajman, D. Sankowski, and M. Soleimani, "Three-dimensional nonlinear inversion of electrical capacitance tomography data using a complete sensor model," Progress In Electromagnetics Research, Vol. 100, 219-234, 2010.
doi:10.2528/PIER09111201

23. Landesa, L., F. Obelleiro, J. L. Rodrguez, and M. R. Pino, "Stable solution of the GMT-MoM method by Tikhonov regularization," Progress In Electromagnetics Research, Vol. 20, 45-61, 1998.
doi:10.2528/PIER98022300

24. Ma, , L., H. Y. Wei, and M. Soleimani, , "Pipeline inspection using magnetic induction tomography based on a narrowband pass filtering method," Progress In Electromagnetics Research M, Vol. 23, 65-78, 2012.
doi:10.2528/PIERM11111109

25. Cheney, , M., D. Isaacson, J. C. Newell, S. Simske, and J. Goble, "NOSER: An algorithm for solving the inverse conductivity problem," International Journal of Imaging Systems & Technology, Vol. 2, 66-75, 1990.
doi:10.1002/ima.1850020203

26. Soleimani, , M., C. N. Mitchell, and R. Banasiak, , "Four-dimensional electrical capacitance tomography imaging using experimental data," Progress In Electromagnetics Research , Vol. 90, 171-186, 2009.
doi:10.2528/PIER09010202

27. Wei, , H. Y., M. Soleimani, and , "Four dimensional reconstruction using magnetic induction tomography: Experimental study," Progress In Electromagnetics Research, Vol. 129, 17-32, 2012..

28. Adler, , A., J. H. Arnold1, R. Bayford, A. Borsic, B. Brown, P. Dixon, T. J. C. Faes, I. Frerichs, H. Gagnon, Y. Garber, B. Grychtol, and G. Hahn, "Greit: A uni¯ed approach to 2D linear EIT reconstruction of lung images ," Physiological Measurement, , Vol. 30, No. 6, 35-55, 2009.
doi:10.1088/0967-3334/30/6/S03

29. Banasiak, R., Z. Ye, and M. Soleimani, "Improving three-dimensional electrical capacitance tomography imaging usingapproximation error model theory," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 2--3, 411-421, 2012.
doi:10.1163/156939312800030884

30. Lai, J. C. Y., C. B. Soh, E. Gunawan, and K. S. Low, "Homo-geneous and heterogeneous breast phantoms for ultra-wideband microwave imaging applications, ," Progress In Electromagnetics Research, Vol. 100, 397-415, 2010.
doi:10.2528/PIER09121103

31. Bonafoni, , S., F. Alimenti, G. Angelucci, and G. Tasselli, "Mi-crowave radiometry imaging for forest fire detection: A simulation study," Progress In Electromagnetics Research,, Vol. 112, 77-92, 2011.

32. Zhang, , M., Y. W. Zhao, H. Chen, and W.-Q. Jiang, "SAR imaging simulation for composite model of ship on dynamic ocean scene," Progress In Electromagnetics Research,, Vol. 113, 395-412, 2011.
doi:10.2528/PIER11071501

33. Hajihashemi, M. R. , M. R., M. El-Shenawee, and , "Inverse scattering of three-dimensional PEC objects using the level-set method," Progress In Electromagnetics Research,, Vol. 116, 23-47, 2011.

34. Catapano, , I., F. Soldovieri, and L. Crocco, "On the feasibility of the linear sampling method for 3D GPR surveys," Progress In Electromagnetics Research, Vol. 118, 185-203, 2011.
doi:10.2528/PIER11042704