Vol. 130
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-08-14
Reconstruction of Microwave Absorption Properties in Heterogeneous Tissue for Microwave-Induced Thermo-Acoustic Tomography
By
Progress In Electromagnetics Research, Vol. 130, 225-240, 2012
Abstract
Aiming to efficiently overcome the acoustic refraction and accurately reconstruct the microwave absorption properties in heterogeneous tissue, an iterative reconstruction method is proposed for microwave-induced thermo-acoustic tomography (MITAT) system. Most current imaging methods in MITAT assume that the heterogeneous sound velocity (SV) distribution obeys a simple Gaussian distribution. In real problem, the biological tissue may have several different inclusions with different SV distribution. In this case, the acoustic refraction must be taken into account. The proposed iterative method is consisted of an iterative engine with time reversal mirror (TRM), fast marching method (FMM) and simultaneous algebraic reconstruction technique (SART). This method utilizes TRM, FMM and SART to estimate the SV distribution of tissue to solve the phase distortion problem caused by the acoustic refraction effect and needs little prior knowledge of the tissue. The proposed method has great advantages in both spatial resolution and contrast for imaging tumors in acoustically heterogeneous medium. Some numerical simulation results are given to demonstrate the excellent performance of the proposed method.
Citation
Jinguo Wang, Zhiqin Zhao, Jian Song, Xiaozhang Zhu, Zai-Ping Nie, and Qing Huo Liu, "Reconstruction of Microwave Absorption Properties in Heterogeneous Tissue for Microwave-Induced Thermo-Acoustic Tomography," Progress In Electromagnetics Research, Vol. 130, 225-240, 2012.
doi:10.2528/PIER12062704
References

1. Ku, G., B. D. Fornage, X. Jin, M. Xu, K. K. Hunt, and L. V. Wang, "Thermoacoustic and photoacoustic tomography of thick biological tissues toward breast imaging," Technol. Cancer Res. Treat., Vol. 4, No. 5, 1-7, 2005.

2. Kruger, R. A., P. Liu, Y. R. Fang, and C. R. Appledorn, "Photoa-coustic ultrasound (PAUS) --- Reconstruction tomography," Med. Phys., Vol. 22, No. 10, 1605-1609, 1995.
doi:10.1118/1.597429

3. Ku, G. and L. V. Wang, "Scanning microwave-induced thermoacoustic tomography: Signal, resolution and contrast," Med. Phys., Vol. 28, No. 1, 4-10, 2001.
doi:10.1118/1.1333409

4. Zeng, X. and G. Wang, "Numerical study of microwave-induced thermo-acoustic effect for early breast cancer detection," IEEE Antennas and Propagation Society International Symposium, 839-842, 2005.

5. Xu, M. and L. V. Wang, "Pulsed-microwave-induced thermoacoustic tomography: Filtered backprojection in a circular measurement configuration," Med. Phys., Vol. 29, No. 8, 1661-1669, 2002.
doi:10.1118/1.1493778

6. Hristova, Y., P. Kuchment, and L. Nguyen, "Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media," Inv. Probl., Vol. 24, No. 5, 055006, 2008.
doi:10.1088/0266-5611/24/5/055006

7. Hristova, Y., "Time reversal in thermoacoustic tomography --- An error estimate," Inv. Probl., Vol. 25, No. 5, 055008, 2009.
doi:10.1088/0266-5611/25/5/055008

8. Agranovsky, M. and P. Kuchment, "Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography," Inv. Probl., Vol. 23, No. 5, 2089, 2007.
doi:10.1088/0266-5611/23/5/016

9. Jin, X. and L. V. Wang, "Thermoacoustic tomography with correction for acoustic speed variations," Phys. Med. Biol., Vol. 51, 6437-6448, 2006.
doi:10.1088/0031-9155/51/24/010

10. Jin, X., C. Li, and L. V. Wang, "Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography," Med. Phys., Vol. 35, No. 7, 3205-3214, 2008.
doi:10.1118/1.2938731

11. Zhang, J. and M. A. Anastasio, "Reconstruction of speed-of-sound and electromagnetic absorption distributions in photoacoustic tomography ," Proc. SPIE, Vol. 6086, 339-345, 2006.

12. Xie, Y., B. Guo, J. Li, G. Ku, and L. V. Wang, "Adaptive and robust methods of reconstruction (ARMOR) for thermoacoustic tomography," IEEE Trans. Biomed. Eng., Vol. 55, No. 12, 2741-2752, 2008.
doi:10.1109/TBME.2008.919112

13. Cox, B. T. and B. E. Treeby, "Artifact trapping during time reversal photoacoustic imaging for acoustically heterogeneous media," IEEE Trans. Med. Imag., Vol. 29, No. 2, 387-396, 2010.
doi:10.1109/TMI.2009.2032358

14. Xu, Y. and L. V. Wang, "Effects of acoustic heterogeneity in breast thermoacoustic tomography," IEEE Trans. Ultrason., Ferroelect. Control., Vol. 50, No. 9, 1134-1146, 2003.
doi:10.1109/TUFFC.2003.1235325

15. Li, S., K. Mueller, M. Jackowski, D. Dione, and L. Staib, "Fast marching method to correct for refraction in ultrasound computed tomography," IEEE International Symposium in Biomedical Imaging (ISBI), 896-899, 2006.

16. Andersen, A. and A. Kak, "Simultaneous algebraic reconstruction technique (SART)," Ultrason. Imaging, Vol. 6, 81-94, 1984.
doi:10.1016/0161-7346(84)90008-7

17. Duric, N., P. Littrup, L. Poulo, A. Babkin, R. Pevzner, E. Holsapple, O. Rama, and C. Glide, "Detection of breast cancer with ultrasound tomography: First results with the computed ultrasound risk evaluation (CURE) prototype," Med. Phys., Vol. 34, No. 2, 773-785, 2007.
doi:10.1118/1.2432161

18. Li, S., M. Jackowski, D. Dione, L. Staib, and K. Mueller, "Refraction corrected transmission ultrasound computed tomography for application in breast imaging," Med. Phys., Vol. 37, No. 5, 2233-2246, 2010.
doi:10.1118/1.3360180

19. Duric, N., P. Littrup, A. Babkin, D. Chambers, and S. Azevedo, "Development of ultrasound tomography for breast imaging: Technical assessment," Med. Phys., Vol. 32, No. 5, 1375-1386, 2005.
doi:10.1118/1.1897463

20. Quan, Y. and L. Huang, "Sound-speed tomography using first-arrival transmission ultrasound for a ring array," Proc. SPIE, Vol. 6513, 2007.

21. Xu, Y. and L. V. Wang, "Time reversal and its application to tomography with diffracting sources," Phys. Rev. Lett., Vol. 92, No. 3, 1-4, 2004.
doi:10.1103/PhysRevLett.92.033902

22. Fink, M., "Time reversal of ultrasonic fields I. Basic principles," IEEE Trans. Ferroelectrics, Frequency Control., Vol. 39, No. 5, 555-567, 1992.
doi:10.1109/58.156174

23. Fink, M. and C. Prada, "Acoustic time reversal mirror," Inv. Probl., Vol. 17, No. 1, 1-38, 2001.
doi:10.1088/0266-5611/17/1/201

24. Chen, G. P., Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "A computational study of time reversal mirror technique for microwave-induced thermo-acoustic tomography," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 12, 2191-2204, 2008.
doi:10.1163/156939308787522555

25. Chen, G. P., W. B. Yu, Z. Q. Zhao, Z. P. Nie, and Q. H. Liu, "The prototype of microwave-induced thermo-acoustic tomography imaging by time reversal mirror," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 11, 1565-1574, 2008.
doi:10.1163/156939308786390021

26. Zhang, H., C. Thurber, and C. Rowe, "Automatic P-wave arrival detection and picking with multiscale wavelet analysis for single-component recordings," Bull. Seism. Soc. Am., Vol. 93, No. 5, 1904-1912, 2003.
doi:10.1785/0120020241

27. Ramananantoandro, R. and N. Bernitsas, "A computer algorithm for automatic picking of refraction first-arrival-time," Geoexploration, Vol. 24, No. 2, 147-151, 1987.
doi:10.1016/0016-7142(87)90088-3

28. Capozzoli, A., C. Curcio, and A. Liseno, "GPU-based omega-k tomographic processing by 1D non-uniform FFTs," Progress In Electromagnetics Research M, Vol. 23, 279-298, 2012.
doi:10.2528/PIERM11083003

29. Jiang, M. and G. Wang, "Convergence of the simultaneous algebraic reconstruction technique (SART)," IEEE Trans. Imag. Proc., Vol. 12, No. 8, 2003.

30. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939306775777350

31. Mast, T. D., "Empirical relationships between acoustic parameters in human soft tissue," Acoust. Res. Lett., Vol. 1, No. 2, 37-42, 2000.
doi:10.1121/1.1336896

32. Cox, B. T., S. Kara, S. R. Arridge, and P. C. Beard, "k-space propagation models for acoustic heterogeneous media: Application to biomedical photoacoustic ," J. Acoust. Soc. Am., Vol. 121, No. 6, 3453-3464, 2007.
doi:10.1121/1.2717409

33. Treeby, B. E. and B. T. Cox, "k-wave: A MATLAB toolbox for the simulation and reconstruction of photoacoustic wave-fields," J. Biomed. Opt., Vol. 15, No. 2, 021314, 2010.
doi:10.1117/1.3360308

34. Li, C., L. Huang, N. Duric, H. Zhang, and C. Rowe, "An improved automatic time-of-flight picker for medical ultrasound tomography," Ultrasonic, Vol. 49, No. 1, 61-72, 2009.
doi:10.1016/j.ultras.2008.05.005