Vol. 128

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-05-27

A Hybrid Implicit-Explicit Spectral FDTD Scheme for Oblique Incidence Problems on Periodic Structures

By Yunfei Mao, Bin Chen, Hao-Quan Liu, Jing-Long Xia, and Ji-Zhen Tang
Progress In Electromagnetics Research, Vol. 128, 153-170, 2012
doi:10.2528/PIER12032306

Abstract

This paper combines a hybrid implicit-explicit (HIE) method with spectral finite-difference time-domain (SFDTD) method for solving periodic structures at oblique incidence, resulting in a HIE-SFDTD method. The new method has the advantages of both HIE-FDTD and SFDTD methods, not only making the stability condition weaker, but also solving the oblique incident wave on periodic structures. Because the stability condition is determined only by two space discretizations in this method, it is extremely useful for periodic problems with very fine structures in one direction. The method replaces the conventional single-angle incident wave with a constant transverse wave-number (CTW) wave, so the fields have no delay in the transverse plane, as a result, the periodic boundary condition (PBC) can be implemented easily for both normal and oblique incident waves. Compared with the ADI-SFDTD method it only needs to solve two untridiagonal matrices when the PBC is applied to, other four equations can be updated directly, while four untridiagonal matrices, two tridiagonal matrices, and six explicit equations should be solved in the ADI-SFDTD method. Numerical examples are presented to demonstrate the efficiency and accuracy of the proposed algorithm. Results show the new algorithm has better accuracy and higher efficiency than that of the ADI-SFDTD method, especially for large time step sizes. The CPU running time for this method can be reduced to about 45% of the ADI-SFDTD method.

Citation


Yunfei Mao, Bin Chen, Hao-Quan Liu, Jing-Long Xia, and Ji-Zhen Tang, "A Hybrid Implicit-Explicit Spectral FDTD Scheme for Oblique Incidence Problems on Periodic Structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
doi:10.2528/PIER12032306
http://jpier.org/PIER/pier.php?paper=12032306

References


    1. Wang, X., M. Zhang, and S.-J. Wang, "Practicability analysis and application of PBG structures on cylindrical conformal microstrip antenna and array," Progress In Electromagnetics Research, Vol. 115, 495-507, 2011.

    2. Yang, P., F. Yang, and Z.-P. Nie, "DOA estimation with subarray divided technique and interpolated esprit algorithm on a cylindrical conformal array antenna," Progress In Electromagnetics Research, Vol. 103, 201-216, 2010.
    doi:10.2528/PIER10011904

    3. Li, R., L. Xu, X. W. Shi, L. Chen, and C. Y. Cui, "Two-dimensional NC-music DOA estimation algorithm with a conformal cylindrical antenna array," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 5-6, 805-818, 2011.
    doi:10.1163/156939311794827249

    4. Kshetrimayum, R. S. and L. Zhu, "Guided-wave characteristics of waveguide based periodic structures loaded with various FSS strip layers," IEEE Transactions on Antennas and Propagation, Vol. 53, 120-124, 2005.
    doi:10.1109/TAP.2004.840527

    5. Dardenne, X. and C. Craeye, "Method of Moments simulation of infinitely periodic structures combining metal with connected dielectric objects," IEEE Transactions on Antennas and Propagation, Vol. 56, 2372-2380, 2008.
    doi:10.1109/TAP.2008.926779

    6. Petersson, L. E. R. and J.-M. Jin, "A two-dimensional time-domain finite element formulation for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 53, 1480-1488, 2005.
    doi:10.1109/TAP.2005.844405

    7. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Transactions on Antennas and Propagation, Vol. 14, 302-307, 1966.

    8. Xiong, R., B. Chen, Y.-F. Mao, and Y. Yi, "The capacitance thin-slot formalism revisited: An alternative expression for the thin-slot penetration," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 4, 446-458, 2012.

    9. Cai, Z.-Y., B. Chen, Q. Yin, and R. Xiong, "The WLP-FDTD method for periodic structures with oblique incident wave," IEEE Transactions on Antennas and Propagation, Vol. 59, 3780-3785, 2011.
    doi:10.1109/TAP.2011.2163791

    10. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li,and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.

    11. Izadi, M., M. Z. A. Ab Kadir, C. Gomes, and W. F. W. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic fields at intermediate distances from lightning channel," Progress In Electromagnetics Research, Vol. 110, 329-352, 2010.
    doi:10.2528/PIER10080801

    12. Chen, H.-L., B. Chen, Y. Yi, and D.-G. Fang, "Unconditionally stable ADI-BOR-FDTD algorithm for the analysis of rotationally symmetric geometries," IEEE Microw. Wireless Compon. Lett., Vol. 17, 304-306, 2007.
    doi:10.1109/LMWC.2007.892991

    13. Yi, Y., B. Chen, W.-X. Sheng, and Y.-L. Pei, "A memory-effcient formulation of the unconditionally stable FDTD method for solving Maxwell's equations," IEEE Transactions on Antennas and Propagation, Vol. 55, 3729-3722, 2007.
    doi:10.1109/TAP.2007.910499

    14. Duan, Y.-T., B. Chen, and Y. Yi, "Effcient implementation for the unconditionally stable 2-D WLP-FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 19, 677-679, 2009.
    doi:10.1109/LMWC.2009.2031995

    15. Xiao, S.-Q., Z. H. Shao, and B.-Z. Wang, "Application of the improved matrix type FDTD method for active antenna analysis," Progress In Electromagnetics Research, Vol. 100, 245-263, 2010.
    doi:10.2528/PIER09112204

    16. Taflove, A. and S. C. Hagness, Computational Electrodynamics:The Finite-Difference Time-Domain Method, 2nd Edition, Artech House, Boston, MA, 2000.

    17. Wang, S., J. Chen, and P. Ruchhoeft, "An ADI-FDTD method for periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 53, 2343-2346, 2005.
    doi:10.1109/TAP.2005.850763

    18. Singh, G., E.-L. Tan, and Z.-N. Chen, "Effcient complex envelope ADI-FDTD method for the analysis of anisotropic photonic crystals," IEEE Photonics Technology Letters, Vol. 23, 801-803, 2011.
    doi:10.1109/LPT.2011.2138123

    19. Mao, Y.-F., B. Chen, H.-L. Chen, and Q. Wu, "Unconditionally stable SFDTD algorithm for solving oblique incident wave on periodic structures," IEEE Microw. Wireless Compon. Lett., Vol. 19, 257-259, 2009.

    20. Shibayama, J., R. Ando, J. Yamauchi, and H. Nakano, "An LODFDTD method for the analysis of periodic structures at normal incidence," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 890-893, 2009.
    doi:10.1109/LAWP.2009.2028448

    21. Wakabayashi, Y., J. Shibayama, J. Yamauchi, and H. Nakano, "A locally one-dimensional finite difference time domain method for the analysis of a periodic structure at oblique incidence," Radio Science, Vol. 46, 1-9, 2011.

    22. Shibayama, J., R. Ando, J. Yamauchi, and H. Nakano, "Analysis of a photonic bandgap structure using a periodic LOD-FDTD method," Microwave Conference, APMC, 56-59, 2009.
    doi:10.1109/APMC.2009.5385497

    23. Harms, P., R. Mittra, and K. Wai, "Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures," IEEE Transactions on Antennas and Propagation, Vol. 42, 1317-1324, 1994.
    doi:10.1109/8.318653

    24. Amjadi, S. M. and M. Soleimani, "Design of band-pass waveguide filter using frequency selective surfaces loaded with surface mount capacitors based on split-field update FDTD method," Progress In Electromagnetics Research B, Vol. 3, 271-281, 2008.
    doi:10.2528/PIERB07122402

    25. Belkhir, A., O. Arar, S. S. Benabbes, O. Lamrous, and F. I. Baida, "Implementation of dispersion models in the splitfield finite-difference-time-domain algorithm for the study of metallic periodic structures at oblique incidence," Phys. Rev. E, Vol. 81, 046705, 2010.

    26. Shahmansouri, A. and B. Rashidian, "GPU implementation of split-field finite-difference time-domain method for Drude-Lorentz dispersive media," Progress In Electromagnetics Research, Vol. 125, 55-77, 2012.
    doi:10.2528/PIER12010505

    27. Amir, A. and R.-S. Yahya, "Spectral FDTD: A novel technique for the analysis of oblique incident plane wave on periodic structures," IEEE Transactions on Antennas and Propagation, Vol. 54, 1818-1825, 2006.

    28. Yang, F., A. Elsherbeni, and J. Chen, "A hybrid spectral-FDTD/ARMA method for periodic structure analysis," IEEE Antennas and Propagation Society International Symposium, 3720-3723, 2007.

    29. Huang, B. K., G. Wang, and Y. S. Jiang, "A hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microwave and Optical Tech. Lett., Vol. 39, No. 2, 97-101, 2003.
    doi:10.1002/mop.11138

    30. Chen, J. and J. G. Wang, "A 3D hybrid implicit-explicit FDTD scheme with weakly conditional stability," Microwave and Optical Tech. Lett.,, Vol. 48, No. 11, 2291-2294, 2006.
    doi:10.1002/mop.21898

    31. Thomas, J.-W., Numerical Partial Differential Equations: Finite Difference Methods, Springer Verlag, Berlin, Germany, 1995.

    32. Zhao, A.-P., "Two special notes on the implementation of the unconditionally stable ADI-FDTD method," Microwave and Optical Tech. Lett., Vol. 33, No. 4, 273-277, 2002.
    doi:10.1002/mop.10295

    33. Yu, Y. and J. J. Simpson, "An E-J Collocated 3-D FDTD model of electromagnetic wave propagation in magnetized cold plasma," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 2, 469-478, February 2010.
    doi:10.1109/TAP.2009.2037706

    34. Hu, W. and S. A. Cummer, "An FDTD model for low and high altitude lightning-generated EM fields," IEEE Transactions on Antennas and Propagation, Vol. 54, 1513-1522, May 2006.
    doi:10.1109/TAP.2006.874336

    35. Jung, K.-Y., F. L. Teixeira, and R. Lee, "Complex envelop PML-ADI-FDTD method for lossy anisotropic dielectrics," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 643-646, 2007.
    doi:10.1109/LAWP.2007.913324