Vol. 125
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-03-06
A Modified Differential Evolution Algorithm for Shaped Beam Linear Array Antenna Design
By
Progress In Electromagnetics Research, Vol. 125, 439-457, 2012
Abstract
With the advancement of technology, the need of antenna arrays with shaped power patterns increases day by day for the purpose of improvement of communication. In this article, we represent a new method for designing optimized linear array with shaped beam radiation pattern of desired specifications. The main objective is to obtain suitable current excitation amplitude and phase distribution for the linear array elements so that it can produce the desired custom shaped radiation pattern as the user demands. The design procedure utilizes an improved variant of a prominent and efficient metaheuristics of current interest, namely the Differential Evolution (DE). In our modified DE algorithm, denoted as DE_rBM_2SX, new mutation and crossover strategies are employed. These modifications help to overcome some drawbacks of classical DE. Two examples of linear array with shaped radiation pattern design problem are considered to illustrate the effectiveness of our algorithm. Our results are also compared with two state-of-the-art variants of DE and Particle Swarm Optimization (PSO) - namely JADE and CLPSO (Comprehensive Learning Particle Swarm Optimization). The comparison clearly reveals that our optimization algorithm is more efficient than JADE or CLPSO in finding optimum element excitation amplitude and phase distribution for the desired shaped pattern.
Citation
Ankush Mandal, Hamim Zafar, Swagatam Das, and Athanassios V. Vasilakos, "A Modified Differential Evolution Algorithm for Shaped Beam Linear Array Antenna Design," Progress In Electromagnetics Research, Vol. 125, 439-457, 2012.
doi:10.2528/PIER11112408
References

1. Milne, K., "Synthesis of power radiation patterns for linear array antennas," IEEE Proceedings H, Vol. 134, No. 3, 285-296, 1987.

2. Zhang, W. K. and Y.-M. Bo, "Pattern synthesis for linear equal-spaced antenna array using an iterative eigenmodes method," IEEE Proceedings H, Vol. 135, No. 3, 167-170, 1988.

3. Isernia, T., O. M. Bucci, and N. Fiorentino, "Shaped beam antenna synthesis problems: Feasibility criteria and new strategies," Journal of Electromagnetic Waves and Applications, Vol. 12, No. 1, 103-138, 1998.
doi:10.1163/156939398X00098

4. Cid, J. M., J. A. Rodriguez, and F. Ares, "Shaped power patterns produced by equispaced linear arrays: Optimized synthesis using orthogonal sin(Nx)/sin(x) beams," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 7, 985-992, 1999.
doi:10.1163/156939399X00466

5. Azevedo, J. A. R., "Shaped beam pattern synthesis with non-uniform sample phases," Progress In Electromagnetics Research B, Vol. 5, 77-90, 2008.
doi:10.2528/PIERB08020103

6. Akdagli, A. and K. Guney, "Shaped-beam pattern synthesis of equally and unequally spaced linear antenna arrays using a modified tabu search algorithm," Microwave Opt. Technol. Lett., Vol. 36, No. 1, 16-20, 2003.
doi:10.1002/mop.10657

7. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 8, Aug. 2005.
doi:10.1109/TAP.2005.851762

8. Godara, L. C. and Ed., Handbook of Antennas in Wireless Communications, CRC, Boca Raton, FL, 2002.

9. Udina, A., N. M. Martin, and L. C. Jain, "Linear antenna array optimization by genetic means," Third International Conference on Knowledge-based Intelligent Information Engineering Systems Adelaide, Australia, Sept. 1999.

10. Ares-Pena, F. J., A. Rodriguez-Gonzalez, E. Villanueva-Lopez, and S. R. Rengarajan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Transactions on Antennas and Propagation, Vol. 47, 506-510, Mar. 1999.
doi:10.1109/8.768786

11. Tian, Y. B. and J. Qian, "Improve the performance of a linear array by changing the spaces among array elements in terms of genetic algorithm," IEEE Transactions on Antennas and Propagation, Vol. 53, 2226-2230, Jul. 2005.

12. Lommi, A., A. Massa, E. Storti, and A. Trucco, "Side lobe reduction in sparse linear arrays by genetic algorithms," Microwave Optical Techn. Lett., Vol. 32, 194-196, 2002.
doi:10.1002/mop.10128

13. Cengiz, Y. and H. Tokat, "Linear antenna array design with use of genetic, memetic and tabu search optimization algorithms," Progress In Electromagnetics Research C, Vol. 1, 63-72, 2008.
doi:10.2528/PIERC08010205

14. Murino, V., A. Trucco, and C. S. Regazzoni, "Synthesis of equally spaced arrays by simulated annealing," IEEE Trans. on Signal Process., Vol. 44, No. 1, 119-122, Jan. 1996.
doi:10.1109/78.482017

15. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microwave and Opt. Technology Lett., Vol. 38, 168-175, 2003.
doi:10.1002/mop.11005

16. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

17. Liu, Y., Z.-P. Nie, and Q. H. Liu, "A new method for the synthesis of non-uniform linear arrays with shaped power patterns," Progress In Electromagnetics Research, Vol. 107, 349-363, 2010.
doi:10.2528/PIER10060912

18. Guney, K. and S. Basbug, "Interference suppression of linear antenna arrays by amplitude-only control using a bacterial foraging algorithm," Progress In Electromagnetics Research, Vol. 79, 475-497, 2008.
doi:10.2528/PIER07110705

19. Babayigit, B., A. Akdagli, and K. Guney, "A clonal selection algorithm for null synthesizing of linear antenna arrays by amplitude control," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1007-1020, 2006.
doi:10.1163/156939306776930222

20. Guney, K. and M. Onay, "Amplitude-only pattern nulling of linear antenna arrays with the use of bees algorithm," Progress In Electromagnetics Research, Vol. 70, 21-36, 2007.
doi:10.2528/PIER07011204

21. Karaboga, D., K. Guney, and A. Akdagli, "Antenna array pattern nulling by controlling both the amplitude and the phase using modified touring ant colony optimisation algorithm," Int. J. Electronics, Vol. 91, 241-251, 2004.
doi:10.1080/00207210410001690638

22. Hosseini, S. A. and Z. Atlasbaf, "Optimization of side lobe level and fixing quasi-nulls in both of the sum and difference patterns by using continuous ant colony optimization (ACO) method," Progress In Electromagnetics Research, Vol. 79, 321-337, 2008.
doi:10.2528/PIER07102901

23. Mallahzadeh, A. R., H. Oraizi, and Z. Davoodi-Rad, "Application of the invasive weed optimization technique for antenna configurations," Progress In Electromagnetics Research, Vol. 79, 137-150, 2008.
doi:10.2528/PIER07092503

24. Sheng, N., C. Liao, W. Lin, L. Chang, Q. Zhang, and H. Zhou, "A hybrid optimized algorithm based on EGO and Taguchi's method for solving expensive evaluation problems of antenna design," Progress In Electromagnetics Research C, Vol. 17, 181-192, 2010.
doi:10.2528/PIERC10091303

25. Basu, B. and G. K. Mahanti, "Fire fly and artificial bees colony algorithm for synthesis of scanned and broad-side linear array antenna," Progress In Electromagnetics Research B, Vol. 32, 169-190, 2011.
doi:10.2528/PIERB11053108

26. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

27. Guney, K., A. Durmus, and S. Basbug, "A plant growth simulation algorithm for pattern nulling of linear antenna arrays by amplitude control," Progress In Electromagnetics Research B, Vol. 17, 69-84, 2009.
doi:10.2528/PIERB09061709

28. Storn, R. and K. Price, "Differential evolution --- A simple and efficient heuristic for global optimization over continuous spaces," Journal of Global Optimization, Vol. 11, No. 4, 341-359, 1997.
doi:10.1023/A:1008202821328

29. Dib, N. I., S. K. Goudos, and H. Muhsen, "Application of Taguchi's optimization method and self-adaptive differential evolution to the synthesis of linear antenna arrays," Progress In Electromagnetics Research, Vol. 102, 159-180, 2010.
doi:10.2528/PIER09122306

30. Chowdhury, A., A. Ghosh, R. Giri, and S. Das, "Optimization of antenna configuration with a fitness-adaptive differential evolution algorithm," Progress In Electromagnetics Research B, Vol. 26, 291-319, 2010.
doi:10.2528/PIERB10080703

31. Bucci, O., G. D'Elia, G. Mazzarella, and G. Panariello, "Antenna pattern synthesis: A new general approach," IEEE Proc., Vol. 82, 358-371, Mar. 1994.
doi:10.1109/5.272140

32. Oliveri, G. and A. Massa, "Bayesian compressive sampling for pattern synthesis with maximally sparse non-uniform linear arrays," IEEE Transactions on Antennas and Propagation, Vol. 59, 467-481, Feb. 2011.
doi:10.1109/TAP.2010.2096400

33. Zhang, J. and A. C. Sanderson, "JADE: Adaptive differential evolution with optional external archive," IEEE Trans. on Evol. Comput., Vol. 13, No. 5, 945-958, Oct. 2009.
doi:10.1109/TEVC.2009.2014613

34. Liang, J. J., A. K. Qin, P. N. Suganthan, and S. Baskar, "Comprehensive learning particle swarm optimizer for global optimization of multimodal functions," IEEE Trans. on Evol. Compt., Vol. 10, 281-295, 2006.
doi:10.1109/TEVC.2005.857610