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Abstract—With the advancement of technology, the need of antenna
arrays with shaped power patterns increases day by day for the purpose
of improvement of communication. In this article, we represent a
new method for designing optimized linear array with shaped beam
radiation pattern of desired specifications. The main objective is to
obtain suitable current excitation amplitude and phase distribution
for the linear array elements so that it can produce the desired custom
shaped radiation pattern as the user demands. The design procedure
utilizes an improved variant of a prominent and efficient metaheuristics
of current interest, namely the Differential Evolution (DE). In our
modified DE algorithm, denoted as DE rBM 2SX, new mutation
and crossover strategies are employed. These modifications help to
overcome some drawbacks of classical DE. Two examples of linear
array with shaped radiation pattern design problem are considered
to illustrate the effectiveness of our algorithm. Our results are also
compared with two state-of-the-art variants of DE and Particle Swarm
Optimization (PSO) — namely JADE and CLPSO (Comprehensive
Learning Particle Swarm Optimization). The comparison clearly
reveals that our optimization algorithm is more efficient than JADE or
CLPSO in finding optimum element excitation amplitude and phase
distribution for the desired shaped pattern.
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1. INTRODUCTION

The performance of a single antenna element is limited due to lack of
high directivity, desired side lobe level is not always achieved, narrow
beam width and uncontrollable null positions being the other problems.
These problems can be addressed using suitable configuration of an
array of antenna elements. Antenna arrays play an important role in
detecting and processing signals arriving from different directions. By
controlling various radiation characteristics antenna array can improve
the performance of broadcasting system. Wide usage of antenna
arrays in mobile, wireless, satellite and radar communications systems
for the improvement of signal quality, increment of system coverage,
maximization of spectral efficiency, capacity and link quality requires
efficient design of the geometry of the antenna array. The objective in
antenna array geometry synthesis is to determine the physical layout
of the array to produce a radiation pattern as similar as possible to the
desired pattern. Depending on the application the shape of the desired
pattern can vary widely. Many antenna array synthesis techniques for
the synthesis of shaped patterns can be found in the literature [1–
6]. Many synthesis methods focus on suppressing the Side Lobe Level
(SLL) while preserving the gain of the main beam [7]. Radiation
patterns having minimal beam width and side lobe level not only
fulfill the high gain demand of the wireless communication systems
but also ensure the reduction of the inter-channel interferences. Some
other methods take the help of null control to subdue the effects of
undesired interference and jamming. Array pattern nulling techniques
play a crucial role for the prevention of degradation in signal-to-
noise ratio performance. In the design of linear antenna array it is
possible to curb side lobe level while keeping the gain of the main
beam unchanged. Array pattern can be controlled using optimizing
configuration of current excitation amplitude of the array elements.
Other methods include the designing of spacing between the elements
keeping a uniform excitation over the array aperture, phased arrays [8].

The classical derivative-based optimization techniques require a
starting point that is reasonably close to the final solution, or they
are prone to be stuck in a local minimum whenever the initial values
lie in a region of minimum. For complex optimization problems
the gradient based methods tend to not reach the global optimum.
The inherent shortcomings of the classical numerical methods have
compelled the researchers all over the world to depend on metaheuristic
algorithms that simulate some natural phenomena. These evolutionary
metaheuristic algorithms have been used to solve antenna problems
accurately using an objective function that suitably takes care of
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side lobe level suppression and desired main beam pattern required
to produce the custom shaped pattern. Genetic algorithms (GA),
a class of global optimization technique have been successfully used
in the design of antenna arrays [9–12]. [13] uses memetic and tabu
search algorithms along with GA for the design of linear antenna
array. Simulated Annealing has been used in [14] for the antenna array
design. Another efficient stochastic search process, particle swarm
optimization (PSO) has also been used for the design of linear array [8].
Gies and Rahmat-Samii [15] used PSO in theta domain for the design
of a phase-differentiated reconfigurable array. An adaptive Boolean
PSO is developed by Zaharis and Yioultsis [16] for beam-forming
on linear antenna array. Liu et al. in [17] suggested a new method
for the synthesis of linear array with shaped power pattern. Guney
and Basbug used Bacterial Foraging algorithm (BFA) for interference
suppression of linear array [18]. Clonal selection algorithm and Bees
algorithm have been used in [19] and [20] respectively for the linear
array design. [21] and [22] use Ant colony optimization for array
design by varying amplitude and phase. Some other antenna array
design uses Invasive weed optimization [23], Taguchi’s method [24],
Firefly and artificial bees colony algorithm [25], FDTD method [26],
plant growth simulation algorithm [27], etc. Recently a prominent
and efficient metaheuristic Differential Evolution (DE) [28] has been
applied for the design of effective antenna array [29, 30]. There are
also different approaches besides these optimization based approaches
which are of great relevance, such as [31, 32].

Differential Evolution (DE) has emerged as one of the most
powerful tools for solving the real world optimization problems. Since
its inception in 1996 it has been used to solve diverse class of
optimization problems. Different improved variants of original DE have
been suggested that yield better result in different situations. In this
article we propose an improved variant of DE, named DE rBM 2SX, for
designing optimized linear array with shaped beam radiation pattern
of desired specifications. The main objective is to obtain suitable
current excitation amplitude and phase distribution for the linear array
elements so that it can produce the desired custom shaped radiation
pattern as the user demands. We also compared our results with the
results obtained using two state-of-the-art EAs, namely JADE [33] and
CLPSO [34]. The results clearly reveal that our method of designing
the linear array is far better than the other two methods.

The paper is organized in the following way. Section 2 provides
a brief overview of classical DE. Section 3 introduces the proposed
DE rBM 2SX algorithm and also describes the modifications used over
classical DE to improve the efficiency. A formulation of the array
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pattern synthesis as an optimization task along with the objective
function has been discussed in Section 4. Section 5 gives the parameter
settings and values used in the experiment. Linear array synthesis
examples and results have been discussed and presented in Section 6.
Section 7 finally concludes the paper and unfolds a few important
future research issues.

2. CLASSICAL DIFFERENTIAL EVOLUTION
ALGORITHM

An iteration of the classical DE algorithm consists of the four basic
steps — initialization of a population of search variable vectors,
mutation, crossover or recombination, and finally selection. The last
three steps are repeated generation after generation until a stopping
criterion is satisfied.

2.1. Initialization of the Population

If DE searches for the global optima within the continuous search
space of dimensionality D then it begins with an initial population
of target vectors ~X = {x1

i , x2
i , . . . , xD

i } where i = 1, 2, 3 . . . NP
(NP is the population size). The individuals of the initial population
are randomly generated from a uniform distribution within the search
space which has maximum & minimum bounds as follows: ~Xmax =
{x1

max, x2
max, . . . , xD

max} and ~Xmin = {x1
min, x2

min, . . . , xD
min}. The jth

component of the ith individual is initialized as follows:

xj
i,0 = xj

min + randj
i (0, 1)

(
xj

max − xj
min

)
; j ∈ [1, D] (1)

Here randj
i (0, 1) is a uniformly distributed random number in (0, 1)

and it is instantiated independently for the j-th component of the i-th
individual.

2.2. Mutation Operation

After the initialization, DE evolves the population by three operations:
mutation, crossover & selection. This process is usually labeled as
DE/x/y/z, where x denotes the method of selection of base vectors for
mutation, y denotes the number of differential vectors used to construct
the mutant vector, and z denotes the crossover type (bin: for binomial,
exp: for exponential).

In each generation DE creates a mutant vector (also known as
donor vector) corresponding to each individual or target vector of
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the current population. Three very common mutation strategies are
described as follows:

a) DE/rand/1: ~Vi,G = ~Xr1,G + F ·
(

~Xr1,G − ~Xr3,G

)
(2)

b) DE/best/1: ~Vi,G = ~Xbest,G + F ·
(

~Xr1,G − ~Xr2,G

)
(3)

c) DE/current-to-best/1:
~Vi,G = ~Xi,G + Fbest ·

(
~Xbest,G − ~Xi,G

)
+ F ·

(
~Xr1,G − ~Xr2,G

)
(4)

The indices r1, r2 and r3 are mutually exclusive random integers
in the range [1, NP ], they are also different from i. These indices
are generated once for each mutant vector. ~Xbest,G is the target
vector which has the best fitness value in the population at generation
G. The scaling factor F and Fbest control the amplification of the
corresponding differentiation vector.

2.3. Crossover Operation

To enhance the potential diversity of the population, a crossover
operation comes into play after generating the donor vector through
mutation. The donor vector mixes its components with the target
vector ~Xi,G under this operation to form the trial vector ~Ui,G =
{u1

i,G, u2
i,G, . . . , uD

i,G}. The DE family of algorithms uses mainly two
kinds of crossover methods — exponential (or two-point modulo) and
binomial (or uniform). Here we shall briefly outline the binomial
crossover scheme that has been used in the proposed algorithm. Under
this scheme the trial vector is created as follows:

uj
i,G =

{
vj
i,G if rand(0, 1) ≤ CR or j = jrand

xj
i,G otherwise

(5)

where CR is a user-specified parameter (Crossover Rate) in the
range [0, 1) and jrand ∈ [1, 2, . . . , D] is a randomly chosen index which
ensures that the trial vector ~Ui,G will differ from its corresponding
target vector ~Xi,G by at least one component.

2.4. Selection Operation

To keep the population size constant over subsequent generations, the
next step of the algorithm calls for selection to determine whether
the target or the trial vector survives to the next generation, i.e.,
at G = G + 1. For maximization problem, if the objective function
value of the trial vector is not less than that of the corresponding
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target vector, then the trial vector is selected for the next generation;
and if it is not so, then the target vector is selected for the next
generation. Obviously, for minimization problem the condition for
selection is just the opposite. The selection operation works as follows
(for maximization problem):

~Xi,G =

{
~Ui,G if f

(
~Ui,G

)
≥ f

(
~Xi,G

)

~Xi,G otherwise
(6)

where f(·) is the objective function to be optimized.

3. THE DE RBM 2SX ALGORITHM

In our algorithm, denoted by DE rBM 2SX, we have done two
modifications over the classical DE — a random best mutation strategy
and a new crossover strategy involving two parent vectors of similar
fitness values. The comparison of the results represented later will
show that these modifications significantly improve the performance
of DE.

3.1. Random Best Mutation Strategy

Among several mutation strategies in DE, strategies like “DE/current-
to-best” and “DE/best” are greedy in nature, i.e., they converge
very quickly by guiding the algorithm to the best position so far
discovered. But, as a result of such exploitative tendency, in many
cases, the population may lose its diversity and global exploration
abilities within a relatively small number of generations, thereafter
getting trapped to some locally optimal point in the search space.
Taking into consideration these facts and to overcome the limitations
of fast but less reliable convergence performance of DE/current-to-
best/1 scheme, in this article, we propose a less greedy and more
explorative variant of the DE/current-to-best/1 mutation strategy by
using randomly selected individual from M top ranking individuals for
each target vector. The new scheme can be expressed as:

~Vi,G = ~Xi,G + Fbest ·
(

~XMrand,i,G − ~Xi,G

)
+ F ·

(
~Xr1,G − ~Xr2,G

)
(7)

where ~XMrand,i,G is the randomly selected individual from the M top
ranking individuals for the i-th individual. Other notations bear the
same meaning as mentioned previously in Section 2.2. Under this
scheme, the target solutions are not always attracted towards the same
best position found so far by the entire population and this feature is
helpful in avoiding premature convergence at local optima.
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3.2. New Crossover Scheme

Crossover operation is very important for any Evolutionary Algorithm
because by this procedure, information gathered by the current
generation is transferred to the next generation. In the classic crossover
operation, the mutant vector exchanges its components with the
current individual to produce the trial vector. In our new crossover
scheme, the mutant vector exchanges its component with two parent
vectors to produce the trial vector. One of the parent vectors is the
current vector and the other one is the vector whose fitness value is
the closest one to the current vector. This process allows different
components transfer of different vectors of same fitness value to the
next generation vector. As a consequence the exploration efficiency
of the algorithm increases. As there are two parent vectors, there are
also two crossover probabilities (CR). The pseudocode of the proposed
crossover scheme is given below.

The flowchart of DE rBM 2SX algorithm is given in Figure 1.

4. FORMULATION OF THE DESIGN PROBLEM

An antenna array is a configuration of individual radiating elements
that are arranged in space and can be used to produce a directional
radiation pattern. In our design problem we consider a linear antenna
array. Optimal configuration of the array elements can achieve the
desired radiation patterns given by user defined functions. For a linear

Let Xi be the current individual and Xclose is the vector whose fitness value

is the closest one to Xi. The mutant vector is Vmut and the trial vector is Ui.

Let CR1 and CR2 be two crossover probabilities set by user.

Usually CR1 is in the range (0, 0.5] and CR2 is in the range (0.5, 1).

Randomval = rand(0, 1)

if Randomval <= CR1 & j 6= jrand then

Ui,j = Xi,j

else if Randomval >= CR2 & j 6= jrand then

Ui,j = Xclose,j

else

Ui,j = Vmut,j

end

Here subscript j means the jth component of the corresponding vector. All

other notations bear the same meaning as mentioned in the classical crossover

operation (Section 3.3).
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Start

Initialize the population randomly from a 

uniform distribution within the search space

Mutate each individual (target vector)

using “Random Best Mutation Strategy”

Apply the new crossover scheme to form trial vectors

Is the fitness value of trial vector 

better than target vector?

Replace the target vector with the trial vector

Is the stopping 

criterion fulfilled?

Stop

Yes

No 

Yes 

No

Figure 1. Flowchart of DE rBM 2SX algorithm.

antenna array with N elements, separated by a uniform distance d, the
array factor is given by,

AF (θ) =
N∑

m=1

Imej2πmd sin θ/λ. (8)

In the above equation Im represents the current amplitude of mth
element. The angle from the normal to the array axis is denoted by θ.
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λ is the wavelength. The normalized array factor can be obtained as:

AF (θ) =
1

AFmax

N∑

m=1

Imej2πmd sin θ/λ, (9)

AFmax being the maximum value of the magnitude of the array factor.
We assume d = λ/2 in this design context and the desired radiation
pattern is achieved by optimizing the current amplitude and phase
coefficients of the array elements. Here we have used a simple but very
effective way to evaluate a particular element excitation amplitude
distribution. For the radiation pattern in the main beam area, we
have calculated the mean square deviation from the desired pattern
and add this value to the fitness function. For the SLLs, we have to
calculate how much greater is the SLL at a point than the desired
level. Then we sum up these values for all the SLLs and add it to the
fitness function. Actually, in case of SLLs, we set a “do not exceed”
scenario. The fitness function can be represented as:

Fitness=Mean Square Deviation in the Main Beam

+
∑

(SLLO−LLD)·H(SLLO−SLLD)+
∑

(FNBW0−FNBWD)2(10)

Mean Square Deviation in the Main Beam

=

M∑

i=1

(NRPD−NRPO)2|θ=θi

M
, (11)

where FNBW denotes the first null beam width, NRP denotes the
Normal Radiation Pattern, subscript O denotes the obtained value
and D denotes the desired value. M is the number of sampling points
of θ (−90◦ ≤ θ ≤ 90◦), we set it to 360. However, if we consider a
main beam to be a pencil beam then the “Mean Square Deviation in
the Main Beam” term is excluded because it is a natural shape for the
main beam, not a customized shape. H( ) denotes the Heaviside step
function. Heaviside step function H (T ) can be expressed as follows:

H(T ) =
{

0 if T < 0
1 if T ≥ 0

(12)

Our objective is to minimize the fitness function.

5. PARAMETER SETTINGS

In this section, we have represented the parameter values used for the
experiment. The parameter values and settings are given below:
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1) NP was kept fixed at 60 throughout the search process.
2) For the mutation process in DE rBM 2SX, M was set to 15.
3) In this algorithm, scaling factor (F ) for each dimension of the

difference vector is generated randomly depending on the value
of the difference vector along the corresponding dimension. F
is generated independently for each dimension of the difference
vector. Scaling factor generation can be expressed as follows:

F d
j = rand(0, 1) · e−|xd

j |/|xd
R (13)

where d ∈ [1, D (Dimension of the search space)]. We are
generating scaling factor for the dth dimension of the jth
individual. xd

j is the value of the difference vector along dth
dimension, xd

R is the search range along that dimension.
4) CR1 was set to 0.1 and CR2 was set to 0.9.

Parameter settings for JADE were as follows: p = 0.05 and c = 0.1
and NP = 60. Details about the parameters can be found in [33].

Parameter settings for CLPSO were as follows: population size =
60. w and Pci were set as given in [34].

6. LINEAR ARRAY SYNTHESIS EXAMPLES

For all the examples, the array element excitation amplitude is in the
range of 0 ≤ I ≤ 1 and the phase is in the range of −90◦ ≤ θ ≤ 90◦.

Figure 2. Element excitation amplitude distributions for first
problem.
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Figure 3. Normalized power patterns for first problem.

The accuracy in the value is measured up to 4 decimal places. For the
first example, we have considered a linear antenna array of 40 elements.
As mentioned earlier, the elements of the array of consideration are
uniformly spaced. To obtain the desired radiation pattern in this
example, only the excitation current amplitudes are optimized by our
proposed DE rBM 2SX algorithm. Here the desired radiation pattern
has the following characteristics:

1) The FNBW is 10◦.
2) The SLLs should have values less than the tapered sidelobe masks

on both side of main beam that decrease linearly from −25 dB to
−35 dB. The masks start from the first null points as −25 dB and
ends on θ = −90◦ or 90◦ as −35 dB.

Clearly, here our objective is to obtain a pattern whose SLLs are less
than the tapered sidelobe masks and the FNBW is almost equal to
10◦. In Table 1, we have represented the element excitation amplitude
values obtained for the 40 elements by our design method.

Actually, in Table 1 we have represented the element excitation
amplitude values for the best radiation pattern we have obtained
over 20 runs. For compactness of the representation, we have not
explicitly represented the element excitation amplitude values for the
best radiation pattern obtained by applying JADE or CLPSO. But we
have represented the element excitation amplitude distribution graph
for the best radiation pattern obtained by our method (DE rBM 2SX)
in comparison with the ones obtained by applying JADE and CLPSO
in Figure 2. All the algorithms are executed for 20 independent runs
for finding the best radiation pattern.
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Table 1. Element excitation amplitude values obtained by our design
method for first problem.

1 (0.2718) 2 (0.2567) 3 (0.1784) 4 (0.2207) 5 (0.3870)
9 (0.2292) 10 (0.5328) 11 (0.5546) 12 (0.5180) 13 (0.7003)
17 (0.7265) 18 (0.8040) 19 (0.7299) 20 (0.7748) 21 (0.8318)
25 (0.6191) 26 (0.6323) 27 (0.5758) 28 (0.5607) 29 (0.4689)
33 (0.2072) 34 (0.2278) 35 (0.2228) 36 (0.2376) 37 (0.1967)

6 (0.4156) 7 (0.5607) 8 (0.4293)
14 (0.6918) 15 (0.5735) 16 (0.6821)
22 (0.6985) 23 (0.6670) 24 (0.5891)
30 (0.5185) 31 (0.4185) 32 (0.3088)
38 (0.2695) 39 (0.1724) 40 (0.1152)

Next, in Figure 3, we have represented the radiation patterns ob-
tained from the element excitation amplitude distributions represented
above.

For the second example, we have considered linear array of 50
elements. In this design problem both excitation amplitude and phase
distribution of the array elements are optimized to obtain the desired
radiation pattern. Here, the desired radiation pattern has the following
characteristics:

1) FNBW is 20◦.
2) The main lobe is tapered 0 to −10 dB.
3) The SLLs should have values less than the sidelobe mask on both

side of main beam. The sidelobe mask is −20 dB in the region
where θ < 0 and tapered from −15 dB to −20 dB where θ > 0.

Clearly, here our objective is to obtain sidelobe levels less than the
mask in the sidelobe region and main beam equal to the mask in the
main beam region. In Tables 2, 3, we have represented respectively
the element excitation amplitude and phase values obtained for the 50
elements by our design method.

As done previously in the first problem, in Tables 2 and 3 we
have respectively represented the element excitation amplitude and
phase values for the best radiation pattern we have obtained over 20
runs. For compactness of the representation, we have not explicitly
represented the element excitation amplitude and phase values for
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Table 2. Element excitation amplitude values obtained by our design
method for second problem.

1 (0.0083) 2 (0.0810) 3 (0.0201) 4 (0.1087) 5 (0.0239)
9 (0.0271) 10 (0.1316) 11 (0.1706) 12 (0.0088) 13 (0.4615)
17 (0.8832) 18 (0.7250) 19 (0.9709) 20 (0.4222) 21 (0.9574)
25 (0.9963) 26 (0.9954) 27 (0.6086) 28 (0.3436) 29 (0.0011)
33 (0.5592) 34 (0.7719) 35 (0.8874) 36 (0.3300) 37 (0.6508)
41 (0.8312) 42 (0.3226) 43 (0.5186) 44 (0.0609) 45 (0.2793)
49 (0.1154) 50 (0.0487)

6 (0.0132) 7 (0.0225) 8 (0.0545)
14 (0.5674) 15 (0.2313) 16 (0.4712)
22 (0.9971) 23 (0.9941) 24 (0.9999)
30 (0.0780) 31 (0.0086) 32 (0.7630)
38 (0.1665) 39 (0.8293) 40 (0.4575)
46 (0.1112) 47 (0.4524) 48 (0.4159)

Table 3. Element excitation phase values obtained by our design
method for second problem.

1 (−38.06) 2 (45.12) 3 (−81.45) 4 (67.78)
9 (−71.76) 10 (−57.21) 11 (−54.79) 12 (63.76)
17 (−57.38) 18 (−16.19) 19 (−27.57) 20 (40.32)
25 (58.06) 26 (84.77) 27 (33.34) 28 (81.39)
33 (12.30) 34 (27.93) 35 (59.07) 36 (−0.87)
41 (23.40) 42 (1.46) 43 (78.49) 44 (52.13)
49 (86.33) 50 (54.84)

5 (−56.89) 6 (54.78) 7 (80.81) 8 (10.59)
13 (−84.50) 14 (−61.02) 15 (35.73) 16 (−75.46)
21 (−0.91) 22 (18.67) 23 (41.94) 24 (55.04)
29 (−87.10) 30 (−89.91) 31 (88.27) 32 (−40.11)
37 (89.94) 38 (−89.56) 39 (−79.54) 40 (−32.51)

45 (−88.16) 46 (86.99) 47 (−68.32) 48 (47.85)
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Figure 4. Element excitation amplitude distributions for second
problem.

Figure 5. Element excitation phase distributions for second problem.

the best radiation pattern obtained by applying JADE or CLPSO.
But we have represented the element excitation amplitude and phase
distribution graph for the best radiation pattern obtained by our
method (DE rBM 2SX) in comparison with the ones obtained by
applying JADE and CLPSO respectively in Figures 4 and 5. All the
algorithms are executed for 20 independent runs for finding the best
radiation pattern.

In Figure 6, we have represented the radiation patterns obtained
from the element excitation amplitude and phase distributions
obtained for the 50 element linear array by applying DE rBM SX,
JADE and CLPSO.
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Figure 6. Normalized power patterns for second problem.

Table 4. Comparison of average CPU time required per run.

Problem
Average CPU Time

Required Per Run (in Seconds)
DE rBM 2SX JADE CLPSO

First Example 2.65 3.57 3.82
Second Example 3.11 4.28 4.91

To give an idea of runtime of the simulation process, we
have represented the comparison of average CPU time required per
run in DE rBM 2SX, JADE and CLPSO based design methods in
Table 4. We performed the simulation in the following experimental
environment:

• CPU: 2.4GHz Intel R©CoreTM2
• RAM: 2GB DDR2
• Language: MATLAB 7

7. CONCLUSION

Design of linear antenna array with shaped power pattern has become
very important in the present context of growing need in the field
electromagnetics. In this paper we introduce an improved variant of
a well-known metaheuristic algorithm, Differential Evolution (DE) for
designing linear antenna array with custom shaped power pattern. The
new variant called DE rBM 2SX has shown promising results regarding
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the design problems and to illustrate its superiority two instances of
the linear antenna array design problem have been considered. The
design problem was formulated as an optimization task on the basis
of a cost function that takes care of the average side lobe levels and
main beam pattern. The experimental results clearly indicate that
the proposed DE rBM 2SX algorithm performs much better than the
other state-of-the-art algorithms, namely JADE and CLPSO.

Future research will focus on exploring the design of other
array geometries using DE rBM 2SX and improvement of the present
algorithm. In future linear array design problem can be viewed
as a multi-objective optimization problem but some problem-specific
expert’s knowledge may have to be incorporated then for pointing out
the best solution from the Pareto-optimal set produced by a multi-
objective optimizer.
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