Vol. 123

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-01-06

A Novel Imaging Approach for High Resolution Squinted Spotlight SAR Based on the Deramping-Based Technique and Azimuth Nlcs Principle

By Dao Xiang An, Z.-M. Zhou, Xiao-Tao Huang, and Tian Jin
Progress In Electromagnetics Research, Vol. 123, 485-508, 2012
doi:10.2528/PIER11112110

Abstract

The imaging problem of spotlight synthetic aperture radar (SAR) in the presence of azimuth spectrum folding phenomenon can be resolved by adopting the azimuth deramping-based technique and traditional stripmap SAR imaging algorithm, and this method is the so-called two-step processing approach. However, when the spotlight SAR operates on squinted mode, the echo two-dimensional (2D) spectrum is shifted and skewed due to the squint angle. In such case, the original two-step processing approach is not suitable anymore. This paper presents a novel imaging algorithm using the deramping-based technique and azimuth nonlinear chirp scaling (ANLCS) technique. First, the problem of azimuth spectrum folding phenomenon in squinted spotlight SAR is analyzed. Subsequently, based on the analysis results, the linear range walk correction (LRWC) is applied for removing the squint angle impacts on signal azimuth coarse focusing. At last, a modified azimuth NLCS algorithm is proposed for overcoming the depth of focus (DOF) limitation problem that induced by the LRWC preprocessing. Point targets simulation results are presented to validate the effectiveness of the proposed algorithm to process squinted spotlight SAR data with azimuth spectrum folding phenomenon.

Citation


Dao Xiang An, Z.-M. Zhou, Xiao-Tao Huang, and Tian Jin, "A Novel Imaging Approach for High Resolution Squinted Spotlight SAR Based on the Deramping-Based Technique and Azimuth Nlcs Principle," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110
http://jpier.org/PIER/pier.php?paper=11112110

References


    1. Carrara, W. G., R. S. Goodman, and R. M. Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Algorithms, Artech House, Norwood, MA, 1995.

    2. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
    doi:10.2528/PIER10030703

    3. Guo, D., H. Xu, and J. Li, "Extended wavenumber domain algorithm for highly squinted sliding spotlight SAR data processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.

    4. Koo, V. C., Y. K. Chan, V. Gobi, M. Y. Chua, C. H. Lim, C.-S. Lim, C. C. Thum, T. S. Lim, Z. Bin Ahmad, K. A. Mahmood, M. H. Bin Shahid, C. Y. Ang, W. Q. Tan, P. N. Tan, K. S. Yee, W. G. Cheaw, H. S. Boey, A. L. Choo, and B. C. Sew, "A new unmanned aerial vehicle synthetic aperture radar for environmental monitoring," Progress In Electromagnetics Research, Vol. 122, 245-268, 2012.
    doi:10.2528/PIER11092604

    5. Lanari, R., M. Tesauro, E. Sansosti, and G. Fornaro, "Spotlight SAR data focusing based on a two-step processing approach," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 9, 1993-2004, 2001.
    doi:10.1109/36.951090

    6. Lanari, R., S. Zoffoli, E. Sansosti, G. Fornaro, and S. Serafino, "New approach for hybrid strip-map/spotlight SAR data focusing," IEE Proc. --- Radar Sonar Navig., Vol. 148, No. 6, 363-372, 2001.
    doi:10.1049/ip-rsn:20010662

    7. Ding, Z. G., T. Long, T. Zeng, and Y. Zhu, "Deramp range migration processing for space-borne spotlight synthetic aperture radar," Advances in Space Research, Vol. 41, 1822-1826, 2008.
    doi:10.1016/j.asr.2008.01.009

    8. Lim, S.-H., J.-H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
    doi:10.2528/PIER10061901

    9. Wong, F. H. and T. S. Yeo, "New application of nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
    doi:10.1109/36.921412

    10. Wong, F. H. and I. G. Cumming, "Focusing bistatic SAR data using the nonlinear chirp scaling algorithm," IEEE Trans. Geosci. Remote Sens., Vol. 46, No. 9, 2493-2505, 2008.
    doi:10.1109/TGRS.2008.917599

    11. Yeo, T. S., N. L. Tan, C. B. Zhang, and Y. H. Lu, "A new subaperture approach to high squint SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 954-968, 2001.
    doi:10.1109/36.921413

    12. Chang, Y.-L., C.-Y. Chiang, and K.-S. Chen, "SAR image simulation with application to target recognition," Progress In Electromagnetics Research, Vol. 119, 35-57, 2011.
    doi:10.2528/PIER11061507

    13. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, 2005.

    14. Mao, X., D.-Y. Zhu, L.Wang, and Z.-D. Zhu, "Comparative study of RMA and PFA on their responses to moving target," Progress In Electromagnetics Research, Vol. 110, 103-124, 2010.
    doi:10.2528/PIER10090607

    15. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," IEE Proc. --- Radar Sonar Navig., Vol. 153, No. 3, 301-310, 2006.
    doi:10.1049/ip-rsn:20045087

    16. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 1, 121-133, 1996.

    17. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scanSAR imaging mode," IEEE Trans. Geosci. Remote Sens., Vol. 34, No. 5, 1123-1135, 1996.
    doi:10.1109/36.536528