Vol. 119

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2011-07-27

Superresolution Enhancement for the Superlens with Anti-Reflection and Phase Control Coatings via Surface Plasmons Modes of Asymmetric Structure

By Pengfei Cao, Xiaoping Zhang, Wei-Jie Kong, Lin Cheng, and Hao Zhang
Progress In Electromagnetics Research, Vol. 119, 191-206, 2011
doi:10.2528/PIER11053010

Abstract

The paper discusses the reason why the image resolution can be significantly enhanced by the superlens with anti-reflection and phase control coatings (ARPC-superlens) via analyzing the surface plasmons (SPs) modes. ARPC-superlens is an asymmetric structure with finite thickness, in which we first find that there are two asymmetric SPs modes. By comparing the dispersion curve of SPs of ARPC-superlens and the SPs group velocity with their counterparts in the metric ones, we find that the Up Asymmetric Mode and Down Asymmetric Mode are excited within the ARPC-superlens with asymmetric structure. By simulating the aerial images in different SPs modes, the paper also discusses the optimal ratio between the metal slab and the ARPC coatings thickness. The results demonstrate that the subwavelength resolution of ARPC-superlens in Down Asymmetric Mode has been enhanced, when the metal/ARPC thickness ratio is 2:1.

Citation


Pengfei Cao, Xiaoping Zhang, Wei-Jie Kong, Lin Cheng, and Hao Zhang, "Superresolution Enhancement for the Superlens with Anti-Reflection and Phase Control Coatings via Surface Plasmons Modes of Asymmetric Structure," Progress In Electromagnetics Research, Vol. 119, 191-206, 2011.
doi:10.2528/PIER11053010
http://jpier.org/PIER/pier.php?paper=11053010

References


    1. Pendry, J. B. and Negative refraction makes a perfect lens, "Phys. Rev. Lett.,", Vol. 85, 3966, 2000.

    2. Veselago, V. G., "Properties of materials having simultaneously negative values of dielectric (ε) and magnetic (μ) susceptibilities," Sov. Phys. Solid State, Vol. 8, 2854-2856, 1967.
    doi:10.2528/PIER01081901

    3. Zhang, Y., T. M. Grzegorczyk, and J. A. Kong, "Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability," Progress In Electromagnetics Research, Vol. 35, 271-286, 2002.
    doi:10.2528/PIER03102102

    4. Mahmoud, S. F. and A. J. Viitanen, "Surface wave character on a slab of metamaterial with negative permittivity and permeability," Progress In Electromagnetics Research, Vol. 51, 127-137, 2005.
    doi:10.1063/1.1636250

    5. Liu, Z. W., N. Fang, T.-J. Yen, and X. Zhang, "Rapid growth of evanescent wave by a silver superlens," Appl. Phys. Lett., Vol. 83, 5184, 2003.
    doi:10.1364/JOSAA.25.000911

    6. Moore, C. P., M. D. Arnold, P. J. Bones, and R. J. Blaikie, "Image fidelity for single-layer and multi-layer silver superlenses," JOSA A, Vol. 25, No. 4, 911-918, 2008.
    doi:10.1364/OE.17.011309

    7. Shi, Z., V. Kochergin, and F. Wang, "193nm superlens imaging structure for 20nm lithography node," Optics Express, Vol. 17, No. 14, 11309-11314, 2009.
    doi:10.1063/1.3293448

    8. Chaturvedi, P., W. Wu, V. J. Logeeswaran, Z. Yu, M. S. Islam, S. Y. Wang, R. S. Williams, and N. X. Fang, "A smooth optical superlens," Appl. Phys. Lett., Vol. 96, 043102, 2010.
    doi:10.2528/PIER10081102

    9. Chuang, C.-H. and Y.-L. Lo, "Signal analysis of apertureless scanning near-field optical microscopy with superlens," Progress In Electromagnetics Research, Vol. 109, 83-106, 2010.
    doi:10.2528/PIER10051309

    10. Jin, Y., "Improving subwavelength resolution of multilayered structures containing negative-permittivity layers by flatting the transmission curves," Progress In Electromagnetics Research, Vol. 105, 347-364, 2010.

    11. Raether, H., Surface Plasmons, Springer, Berlin, 1988.
    doi:10.1364/AO.49.000A36

    12. Tremblay, G. and Y. Sheng, "Improving imaging performance of a metallic superlens using the long-range surface plasmon polariton mode cutoff technique," Applied Optics, Vol. 49, No. 7, 1, 2010.
    doi:10.1163/156939310791586098

    13. Chau, Y. F., H. H. Yeh, and D. P. Tsai, "Surface plasmon esonances effects on different patterns of solid-silver and silver-shell nanocylindrical pairs," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8-9, 1005-1014, 2010.
    doi:10.1163/156939309789566914

    14. Suyama, T., Y. Okuno, and T. Matsuda, "Surface plasmon resonance absorption in a multilayered thin-film grating," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1773-1783, 2009.

    15. Li, Y. and X. Zhang, "Nonlinear optical switch utilizing long-range surface plasmon polaritons," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2363-2371, 2009.
    doi:10.1163/156939309787612419

    16. Xie, H., F. Kong, and K. Li, "The electric field enhancement and resonance in optical antenna composed of Au nanoparicles," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 4, 535-548, 2009.
    doi:10.2528/PIER11042005

    17. Li, X., Y. Ye, and Y. Jin, "Impedance-mismatched hyperlens with increasing layer thicknesses," Progress In Electromagnetics Research, Vol. 118, 273-286, 2011.
    doi:10.2528/PIER10072906

    18. Zhao, J., K. Li, F. Kong, and D. Liu-Ge, "Enhancement of blue light emission using surface plasmons coupling with quantum wells ," Progress In Electromagnetics Research, Vol. 108, 293-306, 2010.
    doi:10.1007/s00340-009-3615-8

    19. Xu, T., L. Fang, J. Ma, B. Zeng, Y. Liu, J. Cui, C. Wang, Q. Feng, and X. Luo, "Localizing surface plasmons with a metalcladding superlens for projecting deep-subwavelength patterns," Appl. Phys. B, Vol. 97, No. 1, 175-179, 2009.
    doi:10.2528/PIER09092801

    20. Cao, P., X. Zhang, L. Cheng, and Q. Meng, "Far field imaging research based on multilayer positive- and negative-refractive-index media under off-axis illumination," Progress In Electromagnetics Research, Vol. 98, 283-298, 2009.
    doi:10.1063/1.3098980

    21. Lee, K., Y. Jung, G. Kang, H. Park, and K. Kim, "Active phase control of a Ag near-field superlens via the index mismatch approach," Appl. Phys. Lett., Vol. 94, 101113, 2009.
    doi:10.1364/OE.16.001711

    22. Lee, K., H. Park, J. Kim, G. Kang, and K. Kim, "Improved image quality of a Ag slab near-field superlens with intrinsic loss of absorption," Optics Express, Vol. 16, No. 3, 1711-1718, 2008.
    doi:10.2528/PIER10061801

    23. Cao, P., L. Cheng, Y. E. Li, X. Zhang, Q. Meng, and W. J. Kong, "Reflectivity and phase control research for superresolution enhancement via the thin films mismatc," Progress In Electromagnetics Research, Vol. 107, 365-378, 2010.
    doi:10.1063/1.2112194

    24. Cheng, Q. and T. J. Cui, "Guided modes in a planar anisotropic biaxial slab with partially negative permittivity and permeability ," Appl. Phy. Lett., Vol. 87, No. 17, 174102, 2005.
    doi:10.1103/PhysRevB.67.193106

    25. Ye, Z., "Optical transmission and reflection of perfect lenses by left handed materials," Phys. Rev. B, Vol. 67, 193106, 2003.
    doi:10.1117/12.681492

    26. Liu, Y., D. F. P. Pile, Z. Liu, D. Wu, C. Sun, and X. Zhang, "Negative group velocity of surface plasmons on thin metallic films," Proc. SPIE, Vol. 6323, 63231M, 2006.

    27. Fox, M., Optical Properties of Solids, Oxford Univerity Press, 2001.
    doi:10.2528/PIER09052801

    28. Monti, G. and L. Tarricone, "Negative group velocity in a split ring resonator-coupled microstrip line," Progress In Electromagnetics Research, Vol. 94, 33-47, 2009.

    29. Chen, Z. and H. J. Simon, "Attenuated total reflectance from a layered silver grating with coupled surface waves," JOSA B, 5, 1988.