Vol. 114
Latest Volume
All Volumes
PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-16
Extended Wavenumber Domain Algorithm for Highly Squinted Sliding Spotlight SAR Data Processing
By
Progress In Electromagnetics Research, Vol. 114, 17-32, 2011
Abstract
Image formation from squinted sliding spotlight synthetic aperture radar (SAR) is limited by azimuth spectral folding and severe two dimension coupling. This paper presents an Extended Wavenumber Domain Algorithm (WDA) for highly squinted sliding spotlight SAR data processing. This algorithm adopts azimuth deramping approach to overcome the azimuth spectral folding phenomenon. The chirp rate for azimuth deramping and the principle of choosing pulse repetition frequency (PRF) is presented to accommodate the characteristic of Doppler history. Subsequently, the full focusing is implemented by WDA. Instead of the conventional Stolt mapping in WDA, a modified Stolt mapping is introduced in order to enlarge the range extension of focused image and enable to update the Doppler parameters along range. To confirm the correctness of the implementation of modified Stolt mapping and the azimuth position of target in focused image, related compensation terms are developed. Point target simulation results are presented to validate the effectiveness of extended WDA to process highly squinted sliding spotlight SAR data.
Citation
Deming Guo, Huaping Xu, and Jingwen Li, "Extended Wavenumber Domain Algorithm for Highly Squinted Sliding Spotlight SAR Data Processing," Progress In Electromagnetics Research, Vol. 114, 17-32, 2011.
doi:10.2528/PIER11012010
References

1. Cumming, I. G. and F. H. Wong, Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation, Artech House, Norwood, MA, 2005.

2. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR) ," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
doi:10.2528/PIERB07110101

3. Mao, X., D. Y. Zhu, and Z. D. Zhu, "Signatures of moving target in polar format spotlight SAR image," Progress In Electromagnetics Research, Vol. 92, 47-64, 2009.
doi:10.2528/PIER09030908

4. Zhao, Y. W., M. Zhang, and H. Chen, "An efficient ocean SAR raw signal simulation by employing fast Fourier transform," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2273-2284, 2010.
doi:10.1163/156939310793699064

5. Park, J.-I. and K.-T. Kim, "A comparative study on isar imaging algorithms for radar target identification," Progress In Electromagnetics Research, Vol. 108, 155-175, 2010.
doi:10.2528/PIER10071901

6. Belcher, D. P. and C. J. Baker, "High resolution processing of hybrid strip-map/spotlight mode SAR," IEE Proc. - Radar Sonar Navig., Vol. 143, No. 6, 366-374, 1984.
doi:10.1049/ip-rsn:19960790

7. Jin, M. and C. Wu, "A SAR correlation algorithm which accommodates large range migration," IEEE Trans. Geosci. Remote Sens., Vol. 22, No. 6, 592-597, 1984.

8. Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H.Wong, "Precision SAR processing using chirp scaling," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 4, 786-799, 1994.
doi:10.1109/36.298008

9. Cafforio, C., C. Prati, and F. Rocca, "SAR data focusing using seismic migration techniques," IEEE Trans. Aerosp. Electron. Syst., Vol. 27, No. 2, 194-207, 1991.
doi:10.1109/7.78293

10. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp-z transform," IEEE Trans. Geosci. Remote Sens., Vol. 33, No. 5, 1296-1299, 1995.
doi:10.1109/36.469496

11. Sun, J., S. Mao, G. Wang, and W. Hong, "Polar format algorithm for spotlight bistatic SAR with arbitrary geometry configuration," Progress In Electromagnetics Research, Vol. 103, 323-338, 2010.
doi:10.2528/PIER10030703

12. Mittermayer, J., R. Lord, and E. Borner, "Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm," Proc. of IGARSS, 1462-1464, 2003.

13. Prats, P., R. Scheiber, J. Mittermayer, A. Meta, and A. Moreira, "Processing of sliding spotlight and TOPS SAR data using baseband azimuth scaling," IEEE Trans. Geosci. Remote Sens., Vol. 48, No. 2, 770-780, 2010.
doi:10.1109/TGRS.2009.2027701

14. Jia, X., Y. Deng, W. Xu, and L. Feng, "Processing of sliding spotlight SAR data using the azimuth frequency deramping," Proc. of EUSAR, Vol. 627, No. 630, 2010.

15. Lanari, R., S. Zoffoli, E. Sansosti, G. Fornaro, and F. Serafino, "New approach for hybrid strip-map/spotlight SAR data focusing," IEE Proc. - Radar, Sonar Navig., Vol. 148, No. 6, 363-372, 2001.
doi:10.1049/ip-rsn:20010662

16. Nie, X., D. Y. Zhu, and Z. D. Zhu, "Application of synthetic bandwidth approach in SAR polar format algorithm using the deramp technique," Progress In Electromagnetics Research, Vol. 80, 447-460, 2008.
doi:10.2528/PIER07121409

17. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Trans. Geosci. Remote Sens., Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891

18. Davidson, G. W., I. G. Cumming, and M. R. Ito, "A chirp scaling approach for processing squint mode SAR data," IEEE Trans. Aerosp. Electron. Syst., Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/7.481254

19. Wong, F. H. and T. S. Yeo, "New applications of the nonlinear chirp scaling in SAR data processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 946-953, 2001.
doi:10.1109/36.921412

20. Yeo, T. S., N. L. Tan, C. Zhang, and Y. Lu, "A new subaperture approach to high squint SAR processing," IEEE Trans. Geosci. Remote Sens., Vol. 39, No. 5, 954-968, 2001.
doi:10.1109/36.921413

21. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber domain synthetic aperture radar focusing with integrated motion compensation," IEE Proc. - Radar Sonar Navig., Vol. 153, No. 3, 301-310, 2006.
doi:10.1049/ip-rsn:20045087

22. Chan, Y. K., V. C. Koo, B.-K. Chung, and H.-T. Chuah, "Modified algorithm for real time SAR signal processing," Progress In Electromagnetics Research C, Vol. 1, 159-168, 2008.
doi:10.2528/PIERC08021801

23. Lim, S.-H., J.-H. Han, S.-Y. Kim, and N.-H. Myung, "Azimuth beam pattern synthesis for airborne SAR system optimization," Progress In Electromagnetics Research, Vol. 106, 295-309, 2010.
doi:10.2528/PIER10061901

24. Ma, L., Z.-F. Li, and G. S. Liao, "System error analysis and calibration methods for multi-channel SAR," Progress In Electromagnetics Research, Vol. 112, 309-327, 2011.