Vol. 114
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2011-02-28
Spatial Microwave Power Combining with Anisotropic Metamaterials
By
Progress In Electromagnetics Research, Vol. 114, 195-210, 2011
Abstract
This paper proposes a novel approach for the spatial microwave power combining. Anisotropic metamatierials are employed to trim the combined electrical fields and form a single beam radiation pattern. The radiation characteristics of a binary horn antennas array are investigated both numerically and experimentally at 12 GHz. The results show that much higher combining efficiency can be achieved. Given a designed combining efficiency, the strict relative position requirements in each transmission unit are reduced in this scheme.
Citation
Bo Wang, and Ka-Ma Huang, "Spatial Microwave Power Combining with Anisotropic Metamaterials," Progress In Electromagnetics Research, Vol. 114, 195-210, 2011.
doi:10.2528/PIER11010604
References

1. Chang, K. and C. Sun, "Millimeter-wave power-combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 31, 91-107, Feb. 1983.
doi:10.1109/TMTT.1983.1131443

2. Russell, K. J., "Microwave power combining techniques," IEEE Trans. Microwave Theory Tech., Vol. 27, 472-478, May 1979.
doi:10.1109/TMTT.1979.1129651

3. Dydyk, M., "Efficient power combining," IEEE Trans. Microwave Theory Tech., 755-762, Jul. 1980.

4. White, W. M., R. M. Gilgenbach, and M. C. Jones, "Radio frequency priming of a long-pulse relativistic magnetron," IEEE Trans. on Plasma Science, Vol. 34, No. 3, 2006.
doi:10.1109/TPS.2006.875829

5. Höft, M., J. Weinzierl, and R. Judaschke, "Broadband analysis of holographic power combining circuits," International Journal of Infrared and Millimeter Waves, Vol. 23, No. 7, Jul. 2002.

6. Magath, T. and M. Höft, "A two-dimensional quasi-optical power combining oscillator array with external injection locking," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 2, 2004.
doi:10.1109/TMTT.2003.821932

7. Batty, W., C. E. Christoffersen, and J. F. Whitaker, "Global coupled EM-electrical-thermal simulation and experimental validation for a spatial power combining MMIC array," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 12, Dec. 2002.
doi:10.1109/TMTT.2002.805142

8. Shahabadi, M. and K. Schünemann, "Millimeter-wave holographic power splitting/combining," IEEE Trans. Microwave Theory Tech., Vol. 45, No. 12, 1997.
doi:10.1109/22.643836

9. Judaschke, R., M. Höft, and K. Schünemann, "Quasi-optical 150-GHz power combining oscillator," EEE Microwave and Wireless Components Letter, Vol. 15, No. 5, 2005.

10. Rutledge, D. B., N.-S. Cheng, R. A. York, R. M. Weikle, and M. P. DeLisio, "Failures in power-combining arrays," IEEE Trans. Microwave Theory Tech., Vol. 47, 1077-1082, 1999.
doi:10.1109/22.775439

11. Schamiloglu, E., "High power microwave sources and applications," IEEE Trans. Microwave Theory Tech., 2004.

12. Levine, J. S., N. Aiello, J. Benford, and B. Harteneck, "Design and operation of a module of phase-locked relativistic magnetrons," J. Appl. Phys., Vol. 70, No. 5, Sep. 1991.
doi:10.1063/1.349347

13. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics Uspekh1, Vol. 10, No. 4, 509-514, Jan.-Feb. 1968.
doi:10.1070/PU1968v010n04ABEH003699

14. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 6, 77-79, 2001.
doi:10.1126/science.1058847

15. Huangfu, J., L. Ran, H. Chen, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, "Experimental confirmation of negative refractive index of a metamaterial composed of ω-like metallic patterns," Appl. Phys. Lett., Vol. 84, No. 9, 1537-1539, Mar. 2004.
doi:10.1063/1.1655673

16. Ran, L.-X., H.-F. Jiang Tao, H. Chen, X.-M. Zhang, K.-S. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-hand metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

17. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Leters, Vol. 85, No. 18, 3966-3969, Oct. 2000.
doi:10.1103/PhysRevLett.85.3966

18. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907

19. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002

20. Cheng, Q., W. X. Jiang, and T.-J. Cui, "Investigations of the electromagnetic properties of three-dimensional arbitrarily-shaped cloaks," Progress In Electromagnetics Research, Vol. 94, 105-117, 2009.
doi:10.2528/PIER09060705

21. Starr, A. F. and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 2006.

22. Enoch, S., G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett., Vol. 89, No. 21, 213902, 2002.
doi:10.1103/PhysRevLett.89.213902

23. Wu, Q., P. Pan, F.-Y. Meng, L.-W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Applied Physics A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9

24. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

25. Hrabar, S., D. Bonefacic, and D. Muha, "Numerical and experimental investigation of horn antenna with embedded ENZ metamaterial lens," Applied Electromagnetics and Communications, 24-26, Sep. 2007.

26. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, No. 15, 2007.

27. Ziolkowski, R. W., "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E, Vol. 70, 2004.

28. Yu, Y., L. F. Shen, L. X. Ran, T. Jiang, and J. T. Huangfu, "Directive emission based on anisotropic metamaterials," Phys. Rev. A, Vol. 77, 2008.

29. Wu, Q., P. Pan, F. Y. L. Meng, W. Li, and J. Wu, "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials," Appl. Phys. A, Vol. 87, 151-156, 2007.
doi:10.1007/s00339-006-3820-9

30. Zhou, H., Z. Pei, S. Qu, S. Zhang, J. Wang, Q. Li, and Z. Xu, "A planar zero-index metamaterial for directive emission," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 953-962, 2009.
doi:10.1163/156939309788355289

31. Wang, B. and K. Huang, "Shaping the radiation pattern with mu and epsilon-near-zero metamaterials," Progress In Electromagnetics Research, Vol. 106, 107-119, 2010.
doi:10.2528/PIER10060103

32. Weng, Z. B., X. M. Wang, Y. Song, Y. C. Jiao, and F. S. Zhang, "A directive patch antenna with arbitrary ring aperture lattice metamaterial structure," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 8-9, 1283-1291, 2009.